Brown dwarf atmosphere science with PLATO

Stuart Littlefair, University of Sheffield Chris Watson, Queen's University, Belfast Ben Burningham, University of Hertfordshire

The limiting effect of dust

Friday, 25 February 2011

State of the art cloud models

Allard, Homeier & Freytag (astro-ph:1011.5405)

Teff = 1600K

Simulations courtesy of Bernd Freytag

see e.g. Freytag et al (2009, Mem SA It, 80, 670)

$$Teff = 2200K$$

Simulations courtesy of Bernd Freytag

see e.g. Freytag et al (2009, Mem SA It, 80, 670)

Friday, 25 February 2011

We as the second for a second of the second

Variability as constraint

• Variability can tell us:

- T_{eff} of cloud formation/settling
- uniformity of cloud deck
- lifetimes of clouds
 - both as function of Spectral Type

Example 1: SIMPJ0136

- 20 mmag variability in J and K_s bands
- Cloud structure
 evolves on timescales
 of days
- Cloudy regions are
 ~100K warmer than
 photosphere

Artigau et al (2009, ApJ, 701, 1534)

Example II: Earth

Lunar Transit of Earth NASA's EPOXI Spacecraft

Range to Earth = 31 million miles Red-Green-Blue Color Composite

Fujii et al (2011, astro-ph:1102.3625)

And a line of the second fair grant of

Why PLATO?

• Ground-based photometry lacks necessary precision.

Majority of objects not variable at >2-10 mmag level

- Robust detections of variability (e.g SIMP J0136) are extremely rare
- Even here; detection required luck, as variability absent in 2010.
- Both problems solved by PLATO

Feasibility

- PLATO easily delivers required photometric accuracy up to brightness limit (m_I~16: H. Rauer's talk)
- Only M/L-type objects feasible
- Targets need to be 20-40 pc or closer
- ~500 objects over 50% of sky

Marocco et al (2010, A&A, 524, 38)

The best things in life are free...

- Greatly benefit from red-sensitivity (>800 nm)
- Input catalog needs careful attention so we don't miss targets
- Gaia should find our targets...

Kepler Input Catalog

Summary

- Variability can be very powerful test of cloud models
- Essential for understanding brown dwarf atmospheres...
- ...and giant planets.
- PLATO provides baseline and accuracy to greatly advance field for small number of nearby objects

