ECLIPSING BINARIES FROM PLATO

John Southworth (STFC Advanced Fellow)

Transiting planet searches

- If you look for planets, you will find eclipsing binaries
- Eclipsing binaries appear to be much more common than eclipsing planets

Transiting planet searches

- If you look for planets, you will find eclipsing binaries
- Eclipsing binaries appear to be much more common than eclipsing planets
- Contrast Kepler-6 with a Kepler EB
- Are they worth bothering with?

• Light curve analysis gives: $\frac{R_1}{a} = \frac{R_2}{a}$ inclination $i = e \cos \omega$

WW Aurigae (Southworth et al., 2005MNRAS.363..529S)

- Light curve analysis gives: $\frac{R_1}{a} = \frac{R_2}{a}$ inclination *i* $e \cos \omega$
- Radial velocity analysis gives: $M_1 \sin^3 i \quad M_2 \sin^3 i \quad a \sin i \quad e \sin \omega$

WW Aurigae (Southworth et al., 2005MNRAS.363..529S)

- Light curve analysis gives: $\frac{R_1}{a} = \frac{R_2}{a}$ inclination *i* $e \cos \omega$
- Radial velocity analysis gives: $M_1 \sin^3 i \quad M_2 \sin^3 i \quad a \sin i \quad e \sin \omega$
- Combine: masses to 1% radii to 1% log g to 0.01 dex

WW Aurigae (Southworth et al., 2005MNRAS.363..529S)

- Light curve analysis gives: $\frac{R_1}{a} = \frac{R_2}{a}$ inclination $i = e \cos \omega$
- Radial velocity analysis gives: $M_1 \sin^3 i = M_2 \sin^3 i = a \sin i = e \sin \omega$
- Combine: masses to 1% radii to 1% log g to 0.01 dex
- Add in T_{eff} : luminosity to 0.04 dex distance to 2%

WW Aurigae (Southworth et al., 2005MNRAS.363..529S)

- Light curve analysis gives: $\frac{R_1}{a} = \frac{R_2}{a}$ inclination *i* $e \cos \omega$
- Radial velocity analysis gives: $M_1 \sin^3 i \quad M_2 \sin^3 i \quad a \sin i \quad e \sin \omega$
- Combine: masses to 1% radii to 1% log g to 0.01 dex
- Add in $T_{\rm eff}$: luminosity to 0.04 dex distance to 2%
- Abuundance analysis using high-S/N spectra and known log g

WW Aurigae (Southworth et al., 2005MNRAS.363..529S)

Muppets Eclipsing binaries from space

- Why go to space?
 - better photometry
 - high duty cycle
 - fewer systematic effects

WIRE satellite

Muppets Eclipsing binaries from space

- Why go to space?
 - better photometry
 - high duty cycle
 - fewer systematic effects
- Many different concepts:
 - MOST (intended for one target at once)
 - CoRoT (small f.o.v., 10⁴ targets)
 - Kepler (10^5 targets at once)
 - BRITE (huge f.o.v., very bright stars)

WIRE satellite

Muppets Eclipsing binaries from space

- Why go to space?
 - better photometry
 - high duty cycle
 - fewer systematic effects
- Many different concepts:
 - MOST (intended for one target at once)
 - CoRoT (small f.o.v., 10⁴ targets)
 - Kepler (10⁵ targets at once)
 - BRITE (huge f.o.v., very bright stars)
- The WIRE satellite:
 - launched in 1999 to survey galaxies
 - main mission failed (coolant loss)
 - star tracker used as fast photometer

WIRE satellite

WIRE satellite photometry of β Aurigae

- β Aurigae (V = 1.9) as seen by WIRE in April 2006
- Modelled using my JKTEBOP code: masses to 1.2% and radii to 0.7%
- Southworth, Bruntt & Buzasi (2007A+A...467.1215S)

- Launched in March 2009 by NASA
 - 0.95 m diameter Schmidt telescope
 - $105 deg^2$ field of view
 - monitor 10^5 stars for 3.5 years

- Launched in March 2009 by NASA
 - 0.95 m diameter Schmidt telescope
 - -105 deg^2 field of view
 - monitor 10^5 stars for 3.5 years
- Main goal: transiting planets
 - 15 found so far

- Launched in March 2009 by NASA
 - 0.95 m diameter Schmidt telescope
 - $-105 \deg^2$ field of view
 - monitor 10⁵ stars for 3.5 years
- Main goal: transiting planets
 - 15 found so far
- Additional science 1: eclipsing binaries
 - 1832 found in first data release (Prša et al. 2011AJ....141...83P)

- Launched in March 2009 by NASA
 - 0.95 m diameter Schmidt telescope
 - $-105 deg^2$ field of view
 - monitor 10⁵ stars for 3.5 years
- Main goal: transiting planets
 - 15 found so far
- Additional science 1: eclipsing binaries
 - 1832 found in first data release (Prša et al. 2011AJ....141...83P)
- Additional science 2: asteroseismology
 - Kepler Asteroseismic Consortium (KASC) for all pulsation types
 - WG9 deals with the binary systems in the KASC target list

KIC 10661783: an oEA system

- Total eclipses and multiperiodic δ Scuti pulsations
- Kepler short cadence for 27 days + SuperWASP data in 2004-8
- V = 9.568, orbital period = 1.231 days
- Goal: mass and radius to 1% then mode ID of pulsations

KIC 10661783: an oEA system

- Remove the eclipses and see what's left
- 55 frequencies found in the interval 200–350 μ Hz (18–31 c d $^{-1}$)
- Previous best: 8 independent frequencies in Y Cam (Rodríguez et al. 2010MNRAS.408.2149R)

KIC 10661783: an oEA system

- Remove the frequencies and fit the eclipses with Wilson-Devinney code
- Semi-detached solution favoured by spectroscopic mass ratio: oEA
- Southworth, Zima, Aerts et al. (MNRAS, arXiv:1102.3599)

KIC ??????: eccentric and δ Scuti

- e = 0.48 and multiperiodic δ Scuti pulsations
- Kepler short-cadence photometry for 3 months
- V = 9.273, orbital period = 25.95 days

KIC 8410637: a giant eclipsing binary

- Primary is a giant $(T_{\rm eff}=4650,\ \log g=2.7)$ with solar-like oscillations
- Eccentric orbit with period greater than one year
- Hekker et al. (2010ApJ...713L.187H)

KIC ??????: a late-type eclipsing binary

- V = 9.179 spectral type = F8 V + G8 V period = 2.178 days
- Candidate for solar-like oscillations \Rightarrow calibrate asteroseismology
- 1 month Kepler short cadence data + new observations ongoing

KIC ??????: a simple eclipsing binary

- V = 10.815 spectral type = F dwarf period = 2.428 days
- Candidate for solar-like oscillations
- 1 month Kepler short cadence data shows very clean variability

The brightest eclipsing binaries

- Histogram of known "EA" objects
 - blue: AAVSO Variable Star Index (VSX)
 - red: General Catalogue of Variable Stars

The brightest eclipsing binaries

- Histogram of known "EA" objects
 - blue: AAVSO Variable Star Index (VSX)
 - red: General Catalogue of Variable Stars

- *V* = 8: 320 EA
- V = 10: 1100 EA
- V = 12: 3000 EA
- V = 14: 5900 EA

Comparing CoRoT, Kepler and PLATO

	CoRoT	Kepler	PLATO
Mirror diameter	27 cm	95 cm	$32 \times 12 \text{cm}$
Number of stars	c.150 000	156 000 📐	400 000 ?
Magnitude range	$V\sim 9 ext{}16$	$V\sim$ 10–15	V = 4–16
Field of view	8.2 deg^2 (ish)	105 deg ²	\sim 500 $ m deg^2$

Comparing CoRoT, Kepler and PLATO

	CoRoT	Kepler	PLATO
Mirror diameter	27 cm	95 cm	$32 \times 12\text{cm}$
Number of stars	c.150 000	156 000 📐	400 000 ?
Magnitude range	$V\sim 9 ext{}16$	$V\sim 10 ext{}15$	V = 4–16
Field of view	8.2 deg ² (ish)	105 deg ²	\sim 500 $ m deg^2$
Duration per field	150 d (long run)	3.5 yr plus	$2 \times 2 yr +$
	30 d (short run)	extension	$8 \times 3 \text{month}$
Observing cadence	512 s or 30 s	mostly 1765 s	25 s
Passband(s)	three (custom)	423–897 nm	white (mostly)

Comparing CoRoT, Kepler and PLATO

	CoRoT	Kepler	PLATO
Mirror diameter	27 cm	95 cm	$32 \times 12\text{cm}$
Number of stars	c.150 000	156 000 📐	400 000 ?
Magnitude range	$V\sim 9 ext{}16$	$V\sim 10 ext{}15$	V = 4–16
Field of view	8.2 deg ² (ish)	105 deg ²	\sim 500 deg 2
Duration per field	150 d (long run)	3.5 yr plus	$2 \times 2 yr +$
	30 d (short run)	extension	$8 \times 3 \text{month}$
Observing cadence	512 s or 30 s	mostly 1765 s	25 s
Passband(s)	three (custom)	423–897 nm	white (mostly)

• PLATO: more stars, brighter stars, higher sampling

Eclipsing binaries with PLATO

Expect about 10 000 EBs with excellent light curves
 we get these for free and with no extra effort!

• Some might host planets (transits, timing variations)

Eclipsing binaries with PLATO

- Expect about 10 000 EBs with excellent light curves
 - we get these for free and with no extra effort!
- Some might host planets (transits, timing variations)
- Will be bright stars:
 - easy to get follow-up spectroscopy
 - earlier spectral types on average

Eclipsing binaries with PLATO

- Expect about 10 000 EBs with excellent light curves
 - we get these for free and with no extra effort!
- Some might host planets (transits, timing variations)
- Will be bright stars:
 - easy to get follow-up spectroscopy
 - earlier spectral types on average
- Likely science areas:
 - structure and evolution of massive stars
 - radius discrepancy of low-mass stars
 - pulsations in eclipsing binaries
 - calibrate asteroseismology
 - distance scale

John Southworth, Astrophysics Group, Keele University