Stellar evolution and asteroseisr

Ind Astronomy

Aamus University

Stellar evolution, exoplanets and asteroseismology

- Strong observational synergy
 - Very similar observational requirements:
 - very sensitive photometry
 - very long observations
- Strong scientific synergy
 - Characterize central stars in planetary systems
 - Investigate stellar internal properties to improve the above

Stellar evolution, exoplanets and asteroseismology

A marriage made

in heaven

Status of space asteroseismology

- WIRE set the direction
- MOST is very successful for relatively largeamplitude pulsators
- CoROT is producing very substantial results, but not in general for exo-planet hosts
- Kepler has shown the power of asteroseismology for a few exo-planet hosts
- PLATO will utilize that power for thousands of stars

Problems in stellar modelling

- Properties of convective cores
 - Strong effect on age determination
- Effects of rotation
 - Mixing processes
 - Evolution of rotation
 - Modelling of rapidly rotating stars
- Near-surface problems
 - Convection (energy transport and turbulent pressure)
 - Effects on oscillation frequencies

Ways forward

- Improved modelling
- Classical observations
- Asteroseismic observations

Pulsating stars in the HR diagram

Kepler

Launched March 2009

Goals of Kepler asteroseismology

- to provide support for the studies of extrasolar planetary systems by characterizing the central stars of the systems
- to perform in-depth asteroseismic investigations of a large number of stars, predominantly but not exclusively those showing solar-like oscillations.

Goals of Kepler asteroseismology PLATO

- to provide support for the studies of extrasolar planetary systems by characterizing the central stars of the systems
- to perform in-depth asteroseismic investigations of a large number of stars, predominantly but not exclusively those showing solar-like oscillations.

Kepler Field of View: 110 square degrees

Blazhko effect in RR Lyrae

Oscillation period: 0.57 d

Modulation period: 39 d

Days

Days

Kolenberg et al. (2010, in the press)

Blazhko effect in RR Lyrae

Thanks to R. Szabó

Subdwarf B stars

Core He burning

Extreme mass loss after red-giant phase

g modes in a subdwarf B star

Reed et al. (2010; MNRAS 409, 1496)

Fit to observed periods

Van Grootel et al. (2010; ApJ 718, L97)

Stellar parameters

^aFrom spectroscopy

^bFrom asteroseismology

^cSince Zero-Age EHB

Van Grootel et al. (2010; ApJ 718, L97)

Estimated Value
27730 ± 270^{a}
28050 ± 470^{b}
5.552 ± 0.041^{a}
5.52 ± 0.03^{b}
0.496 ± 0.002
-2.55 ± 0.07
-0.37 ± 0.01
0.28 ± 0.01
0.261 ± 0.008
$18.4 \pm 1.0^{\circ}$
0.203 ± 0.007
22.9 ± 3.1
4.21 ± 0.11
0.094 ± 0.017
1180 ± 95

Solar-like MS stars

Asymptotics of p modes

$$\nu_{nl} \sim \Delta \nu \left(n + \frac{l}{2} + \alpha \right) + \epsilon_{nl}$$

where

$$\Delta \nu = \left[2 \int_0^R \frac{\mathrm{d}r}{c} \right]^{-1}$$

 $\alpha = \alpha(\nu)$ depends on surface properties.

Large frequency separation:

$$\Delta
u_{nl} =
u_{nl} -
u_{n-1\,l} \simeq \Delta
u$$

Large frequency separation:

$$\Delta \nu_{nl} = \nu_{nl} - \nu_{n-1\,l} \simeq \Delta \nu \propto \langle \rho \rangle^{1/2} \propto (M/R^3)^{1/2}$$

Frequency separations:

$$\delta\nu_{nl} = \nu_{nl} - \nu_{n-1\,l+2} \simeq -(4l+6)\frac{\Delta\nu}{4\pi^2\nu_{nl}} \int_0^R \frac{\mathrm{d}c}{\mathrm{d}r} \frac{\mathrm{d}r}{r}$$

Asteroseismic HR diagram

Echelle diagram

Echelle diagram

Asteroseismology for exo-planet hosts

- Determine mass, radius (with some dependence on stellar models)
- Constrain age
- Constrain rotation period and possibly orientation of rotation axis

HAT-P-7 spectrum

Evolution models

Match of model and observations

Least-squares fits

Least-squares fits

Summary of results

 $M = 1.520 \pm 0.036 M_{\odot}$

 $R = 1.991 \pm 0.018 R_{\odot}$

Age: $1.9 \pm 0.3 \,\mathrm{Gyr}$

Summary of results

Asteroseismology for Kepler 10b

Asteroseismology for Kepler 10b

Kepler 10b, Kepler's first rocky et: planet

Planet: Orbital period: 0.84 d

Radius: 1.42 +- 0.03 R_©

Mass: 4.6 +- 1.2 M_©

Mean density: 8.8 +- 2.5 g/cm³

Mean surface temperature: 1800 K

Solarlike oscillations from Kepler

Chaplin et al (2010; ApJ 713, 169)

Solarlike oscillations from Kepler

Chaplin et al (2010; ApJ 713, 169)

The evolved solar-type star KIC 11026764 (Gemma)

A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764

T. S. METCALFE¹, M. J. P. F. G. MONTEIRO², M. J. THOMPSON^{3,1}, J. MOLENDA-ŻAKOWICZ⁴, T. APPOURCHAUX⁵, W. J. CHAPLIN⁶,
G. DOĞAN⁷, P. EGGENBERGER⁸, T. R. BEDDING⁹, H. BRUNTT¹⁰, O. L. CREEVEY^{11,12}, P.-O. QUIRION¹³, D. STELLO⁹, A. BONANNO¹⁴,
V. SILVA AGUIRRE¹⁵, S. BASU¹⁶, L. ESCH¹⁶, N. GAI^{16,17}, M. P. DI MAURO¹⁸, A. G. KOSOVICHEV¹⁹, I. N. KITIASHVILI²⁰,
J. C. SUÁREZ²¹, A. MOYA²², L. PIAU²³, R. A. GARCÍA²³, J. P. MARQUES²⁴, A. FRASCA¹⁴, K. BIAZZO²⁵, S. G. SOUSA²,
S. DREIZLER²⁶, M. BAZOT², C. KAROFF⁶, S. FRANDSEN⁷, P. A. WILSON^{27,28}, T. M. BROWN²⁹, J. CHRISTENSEN-DALSGAARD⁷,
R. L. GILLILAND³⁰, H. KJELDSEN⁷, T. L. CAMPANTE^{2,7}, S. T. FLETCHER³¹, R. HANDBERG⁷, C. RÉGULO^{11,12}, D. SALABERT^{11,12},
J. SCHOU¹⁹, G. A. VERNER³², J. BALLOT³³, A.-M. BROOMHALL⁶, Y. ELSWORTH⁶, S. HEKKER⁶, D. HUBER⁹, S. MATHUR¹, R. NEW³¹,
I. W. ROXBURGH^{32,10}, K. H. SATO²³, T. R. WHITE⁹, W. J. BORUCKI³⁴, D. G. KOCH³⁴, J. M. JENKINS³⁵

(2010; ApJ 723, 1583)

With thanks to Gülnur Doğan, Aarhus University, and Michael Thompson, Univ. of Sheffield / HAO, NCAR

Power spectrum

Chaplin et al. (2010, ApJ 713, L169)

Evolution in global properties

Mixed modes

Metcalfe et al. 2010

Echelle diagram

Things to come

(or already coming)

Sharp features in stellar models

Γ_1 and ionization

 $au = \int_r^R \mathrm{d}r/c$

Frequency perturbation caused by glitch

Compare with model where glitch has been smoothed:

$$\pm ! = A(!) \sin(2! \frac{1}{2} + A)$$

where ¿g is acoustical depth of glitch.

Effects of rotation

$$\delta\omega_{nlm} = m \int_0^R \int_0^\pi K_{nlm}(r,\theta) \Omega(r,\theta) r \mathrm{d}r \mathrm{d} heta \; ,$$

For p modes, except very low degree:

$$\delta\omega_{nlm} \simeq m \frac{\int_V \rho |\boldsymbol{\delta r}|^2 \Omega \mathrm{d}V}{\int_V \rho |\boldsymbol{\delta r}|^2 \mathrm{d}V} = m \langle \Omega \rangle$$

Geometry of rotation

Assume same average amplitude

Gizon & Solanki (2003)

A prediction

TABLE III

Properties of oscillations of envelope models. The relation between mass and luminosity is derived from Iben's (1964) evolution calculations. The notation is as in Table I.

M/M_{\odot}	L/L_{\odot}	$T_{\rm eff}$	$v_{s,\max}$ (km s ⁻¹)	$(\delta L_s/L_s)_{\rm max}$	П _{max} (days)	⊿ν (μHz)	
5	10 ³	6800	0.014	1.1×10^{-4}	0.32	2.65	_
-	_	5770	0.015	1.7×10^{-4}	0.56	1.82	
~	_	5000	0.021	3.1×10^{-4}	3.5	1.13	
-	_	4500	0.015	3.6×10^{-4}	1.2	0.75	

It is worth pointing out that observations of this type of oscillations might also be useful in the study of stellar convection. The calculation of the oscillation amplitudes resulting from a given convective velocity field is probably considerably simpler than a direct computation of the convective velocities.

Christensen-Dalsgaard & Frandsen (1983; Proc. 66th IAU Colloq., eds Gough & Toomre, Solar Phys. 82, 469)

De Ridder et al. (2009; Nature 459, 398)

Red giants, stacked power spectra

Red giants, stacked power spectra

A HR diagram in terms of v_{max}

Huber et al. (2010)

Red giants, stacked power spectra

Combined scaled échelle diagram

Amplitude

CoROT, Kepler, PLATO, The fun is just starting!

