

WP122000 – Non-seismic diagnostics and model atmospheres

Thierry Morel (Institut d'Astrophysique et de Géophysique, Université de Liège, Belgium)

Main deliverables:

- Procedures for deriving stellar parameters: L, Teff, radii, chemical abundances, ... Targeted accuracy: Teff to within 1% and R to within 2%.
- Grid of 1D/3D model atmospheres.
- Grid of limb-darkening coefficients.

WP122100 – 3D/NLTE model atmospheres

M. Asplund (Germany)

Grid of 3D model atmospheres

3D/NLTE corrections for the abundances of individual lines, stellar parameters and centre-to-limb variations

WP122100 – 3D/NLTE model atmospheres

M. Asplund (Germany)

Grid of 3D model atmospheres

3D/NLTE corrections for the abundances of individual lines, stellar parameters and centre-to-limb variations

Grid of 1D model atmospheres

Procedures for deriving Teff, radii and detailed chemical abundances corrected for 3D/NLTE effects.

WP122200 – Fundamental parameters, chemical abundances and 1D model atmospheres

C. Allende Prieto (Spain)

WP122100 – 3D/NLTE model atmospheres

WP122200 – Fundamental parameters, chemical

M. Asplund (Germany)

C. Allende Prieto (Spain)

Grid of 3D model atmospheres

3D/NLTE corrections for the abundances of individual lines, stellar parameters and centre-to-limb variations

Grid of 1D model atmospheres

Procedures for deriving Teff, radii and detailed chemical abundances corrected for 3D/NLTE effects.

WP122300 – Limb-darkening coefficients

abundances and 1D model atmospheres

A. Claret (Spain)

Grid of limb-darkening coefficients corrected for 3D/NLTE effects.

Determination of radius from non-seismic diagnostics

Three methods currently envisaged for determination of radius from non-seismic diagnostics *alone*:

- Classical method $R = f(L, T_{eff})$
- From fitting of spectrophotometric data
- Interpolation in theoretical isochrones

Determination of radius from non-seismic diagnostics

Three methods currently envisaged for determination of radius from non-seismic diagnostics *alone*:

- Classical method $R = f(L, T_{eff})$
- From fitting of spectrophotometric data
- Interpolation in theoretical isochrones

Classical method: $R = (L/4\pi\sigma T eff^4)^{1/2}$ Log(L/Lsun) = (Mbol, sun - MV - BC)/2.5 $MV = V + 5 + 5\log\pi - AV$

 $\sigma \pi/\pi$ (GAIA) = 1% only for *V* = 15 mag. Assuming $\sigma \pi/\pi = 0$: $\sigma R/R = f(\sigma A_v, \sigma BC, \sigma T_{eff})$ Achieving $\sigma R/R = 2\%$ requires:

 $\sigma T_{eff} < 50$ and 35 K for solar-like and M stars, respectively σA_v and $\sigma BC < 0.015$ mag

σΑν

Local bubble: little extinction for d < 75 pc

(volume corresponding to G2 and M1 dwarfs with V < 9 and 14, respectively).

Vergely et al. (2010)

BC more uncertain for active stars

Bruntt et al. (2010)

σTeff solar-like

σTeff solar-like

Ammler-von Eiff et al. (2009)

Ammler-von Eiff et al. (2009)

σTeff solar-like

Bruntt et al. (2010)

σTeff solar-like

Bruntt et al. (2010)

Casagrande et al. (2008)

Casagrande et al. (2008)

Bruntt et al. (2010)

Bruntt et al. (2010)

Determination of radius from spectrophotometric data

Fit high-quality spectrophotometric data using predictions of model atmospheres assuming for instance:

• Teff, logg, [Fe/H] and Av free parameters

• Only Teff as free parameter, others derived independently. Provides theoretical monochromatic fluxes, f_v .

Comparing with absolute flux, F_{bol} , provides angular diameter.

Coupled with distance from GAIA provides radius, *R*.

 σf_v and $\sigma \theta \sim 2-4 \%$ $\sigma R \sim 1-2 \%$

Determination of radius from interpolation in evolutionary tracks

Locate star in e.g. (M_V , B-V) plane and find best match in theoretical isochrones for appropriate [Fe/H] and [α /Fe] through Bayesian analysis

Allende Prieto & Lambert (1999)

Ribas et al. (2008)

Conclusions

From non-seismic diagnostics *alone*, achieving accuracy of 2% for radius quite challenging:

- 'Classical' method: Teff must be known to within 50 K for solar like and 35 K for M stars (unrealistic in latter case). Accurate knowledge of Av and BC also necessary (to within 0.015 mag).
- From spectrophotometry: most promising method, but sensitive to reddening and availability of space data a serious issue: currently only STIS, PHASES microsatellite in future (del Burgo et al. 2010)?
- From interpolation in isochrones: strongly model dependent.

Conclusions

From non-seismic diagnostics *alone*, achieving accuracy of 2% for radius quite challenging:

- 'Classical' method: Teff must be known to within 50 K for solar like and 35 K for M stars (unrealistic in latter case). Accurate knowledge of Av and BC also necessary (to within 0.015 mag).
- From spectrophotometry: most promising method, but sensitive to reddening and availability of space data a serious issue: currently only STIS, PHASES microsatellite in future (del Burgo et al. 2010)?
- From interpolation in isochrones: strongly model dependent.

BUT

Much more accurate parameters will eventually be obtained from combining non-seismic, seismic and/or transit diagnostics (e.g., Basu et al. 2010; Sozzetti et al. 2007).

Several independent methods can be used to narrow down errors in Teff (excitation equilibrium, line-depth ratios, fitting of Balmer lines, IRFM, interferometry). 'Hybrid' analysis in which seismic constraints enter the spectroscopic analysis possible: e.g., Kepler 10-b, where σ Teff decreases from 150 to only 44 K (and Teff 80 K lower) after using the more precise logg value from seismology (Batalha et al. 2011).

Non-seismic analysis expected to eventually provide Teff to within 60 K and [Fe/H] to within 0.1 dex for the bright solar-like PLATO targets (M stars a concern).