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Objectives

To provide all possible characteristics of host stars
Namely
 stellar mass, radius and age of host stars with a precision of:

Radius ~ 2% -5%

Mass ~ 10% - 30%

Age ~ 200 million years: afew percentforasun 30% can be enough
20% for a younger M dwarf

Studies in planet Mass-Radius diagram for instance relie on stellar M and R
determination. These studies require a homogeneous stellar mass and
radius determination (similar physical description of the stellar models)

« information (models) about stellar activity, rotation, limb darkening,
metallicity ...




Why do we need a Stellar Science WP ?

Accurate stellar masses, ages etc... require that we reduce uncertainties
as much as possible:

Sources of uncertainties :
*Observational errors on non seismic parameters Teff, Z, mean density (transit), Prot ..

cf T. Morel's talk

« Systematic errors due to method determination : degeneracy problem

» Systematic errors due to nonrealistic physical description of stellar models
to missing physics in stellar models




Boundary conditions for WP120’s work

Legacy from CoRoT and Kepler
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Systematic errors due to method determination : degeneracy problem

Ambiguities on mass and age
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Systematic errors due to ‘missing physics’

Young sun : rotationally induced transport
Including disk locking with different lifetimes
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Seismology as a precision tool

Some Corot host stars 4
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Seismology as a precision tool

Warning: only for illustrative purpose
as stars have different
chemical composition
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Seismology as a precision tool
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however |Inaccuracy due to uncertainties in stellar modelling
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Inaccuracy due to uncertainties in stellar modelling

0.9 ==

Biases from uncertainties in the physics of stellar
models must be removed
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Seismology as a precision tool

Mass determination

In another part of the HR diagram: a CoRoT massive giant star
Non-seismic vs seismic constraints
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Seismology as a precision tool

Optimum model = lowest y?

X2 minimisation 4°
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models
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Inaccuracy due uncertainties in stellar modelling

Surface superadiabatic convection
Impact on mass determination
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Inaccuracy due to unrealistic stellar modelling

Initial helium abundance

Impact on mass determination. degeneracy of the solution
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Seismic constraints on mass, age and surface helium

A CoRoT red giant

Use of individual frequencies
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Seismology as a precision tool

Mass determination

Exemple: Get the mean density then the mass of the star
(I. Roxburgh 2002-2010)

Radius

from Gaia

1
M =4z [p(r)ridr =
0

X=r/R

Scaled density
£(x)=p(r)/R’

—

need for proper

From seismic inversions
or model fitting

At Rglj & (X)x? dx
0

-

*Input nonseismic data
*Input seismic data
Stellar models

*Seismic tools
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Uncertainties on stellar modelling
Uncertainties on many processes impact on mass and age accuracies

- some are under controlled
- some requires further work

INITIAL CONDITIONS INPUT PARAMETERS
Initial model initial mass -

Interaction with _ initial chemical composition
surrounding: disk locking evolutionary state

N\:odel
atmosphere

PUT PHYSICS

microscopic: BOUNDARIES
Nuclear reactions » T-tau law
opacities /) Mass loss
equation of state G——

. . Angularmoment
dr}}lfctjrg(s;oplc > eIIar mOdel \) nrLoss

macroscopic: transport and
1D approximation
Convection «o
rotation

internal waves
magnetic field

and
related transports

o6

OO

NUMERICS



Summary

Seismology is quite efficient in providing very precise stellar parameters
given the physics of the stellar models

But

Highly accurate masses, ages, etc...will be obtained with seismology
using more realistic stellar models

Special attention must be devoted to transport processes as they have a
large impact on ages and masses and are still poorly modelled
particularly at the transition between radiative and convective regions
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Organisation of WP 120
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Organisation of WP 120

Workpackages

121  A. Weiss (Germany)  Stellar models: Fto M PMS, MS and
subgiants

122 T. Morel (Belgium) Non sesismic parameters

123 N. Lanza (ltaly) Stellar activity and rotation

124 S.Basu (USA) Seismic diagnostics and tools

125 J. Christensen-Dalsgaard (Danemark) Determination of stellar
parameters

126 K. Belkacem (France) Oscillation mode physics

127 J. Montalban (Belgium) Red giants

128 F. Baudin (France) Interfaces 23




Organisation of WP120: Milestones

First phase of implementation : —
to help dimensioning

[First generation of codes and models ] — the implementation

Existing codes and models.

Is it needed ?
Estimate how far to go to reach the required precision™ on star parameters

Second phase of implementation

Second generation of codes and models | <z=m Improved mgdels and codes
from theoretical work and

CoRoT and KEPLER learning

¥

Required precision on parameter stars is reached

After launch

[ Third generation of codes and models J

¢ | Learning from PLATO data

¥

Hopefully increase the precision beyond the initial requirements

)

*including time of delivery [ [terations over the years J




Organisation of WP 120
PSSPM web site

aim: for the community to download and upload

documents and to circulate information between WP12xxxx

(Responsibles: F. Baudin leader of WP interface WP128000

and K. Belkacem deputy responsible of WP120000)




Organisation of WP120 : Letters of Intent

Objective: the letters of intent aim to organize and identify the groups and individuals
interested in working within the PLATO stellar science package.

* Afirst round of submission closed beginning of January.
O fifteen research groups answered from France, Germany, Spain, Italy, Brazil, Austria

* A second round is now open

O First identify the work package you interested in
(see http://www.ias.u-psud.fr/PLATO_SSPM/PLATO _SSPM_OBJ.html, for the SSPM
structure)

O In the LOI you will have to:
v give contact information
v give a short description of the work you intend to do.
v’ Provide an estimate of the fraction of your time you hope to allocate to the work
covered by the LOI

O It can be submitted indifferently to both websites:
v the SSPM: http://www.ias.u-psud.fr/PLATO SSPM/PLATO SSPM LOI.html
v the PSPM: http://www.oact.inaf.it/plato/PPLC/PSPM/PSPM.html



http://www.ias.u-psud.fr/PLATO_SSPM/PLATO_SSPM_LOI.html
http://www.ias.u-psud.fr/PLATO_SSPM/PLATO_SSPM_LOI.html
http://www.ias.u-psud.fr/PLATO_SSPM/PLATO_SSPM_LOI.html
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Procedures : 3 Cases to be considered

 Large sample of stars : scaling laws
automated: rapid
AM, AR, Aage large
——— Initlal conditions for more sophisticated studies
——— first order delivery for exoplanets

« Smaller sample of stars model and frequency fitting
automated rapid to slow
AM, AR, Aage Dbetter
) second order delivery for exoplanets

* Individual studies of single stars : model and frequency fitting
slow
AM, AR, Aage better

——— constrains on stellar physics and modelling
—— third order delivery for exoplanets
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Biases due to unrealistic stellar modelling

Example: superadiabatic convection

Impact on mass determination
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