F Testing atmospheric evolution scenarios by UV-transit observations of Earth-like exoplanets around M-stars

H. Lammer (1), K. G. Kislyakova (2), M. Holmström (3), Yu. N. Kulikov (4), M. L. Khodachenko (1), J. Weingrill (1), V. I. Shematovich (5), D. Bisikalo (5), A. Hanslmeier (6)

 Space Research Institute, Austrian Academy of Sciences, A-8042 Graz, Austria
 N. I. Lobachevsky State University, University of Nizhnij Novgorod, 603950 Nizhnij Novgorod, Russian Federation

3) Swedish Institute of Space Physics, Box 812, SE-98128 Kiruna, Sweden
4) Polar Geophysical Institute, Russian Academy of Sciences, 183010 Murmansk, Russian Federation
5) Institute of Astronomy, Russian Academy of Sciences, Moscow, Russian Federation
6) Institut fuer Physik, IGAM, Universität Graz, Graz, Austria

PLATO Science conference, Technische Universität Berlin, Germany, February 23 – 25, 2011

The big open questions in planetary atmosphere evolution & habitability

- What is the response on early planetary atmospheres against high energy radiation (X-ray, SXR, EUV, UV) and dense/fast plasma of the young Sun/stars?
 - In time: From a few hours up to evolutionary timescales (Gyr)
 - From star to star: Less massive stars tend to have higher activity levels for longer time scales → M-type stars
 - The scale of the variations is huge: up to 3 orders of mag!
- How can the early atmospheres of Earth-type planets survive the stellar activity during these active periods from Post T-Tauri stage to times when the SXR and EUV fluxes decrease to values which are ≤ 7 times that of the present Sun?
- What is the role of intrinsic and induced magnetic fields in upper atmosphere protection?
- What is the role of atmospheric composition in early atmospheres?

 Were the early atmospheres hydrogen-rich?
 The role of CO₂ as a greenhouse gas and upper atmosphere

 IR-cooler vs. CH₄, H₂O

The Sun's radiation environment during the first 500 Myr

Solar radiation environment during the first 500 Myr after the Sun arrived at the ZAMS

During the post T-Tauri stage the high energy emissions were even higher!

Solar age	t b.p.	X-ray	SXR	EUV	FUV	Lyman- α	UV
[Gyr]	[Gyr]	[1–20Å]	[20–100Å]	[100–920Å]	[920–1180Å]	[1200–1300Å]	[1300–1700Å]
0.7	3.9	37	11	8.6	5	3.9	-
0.65	3.95	43	12	9.4	5.3	4.1	5.8
0.6	4.0	50	13	10	5.7	4.3	-
0.55	4.05	59	15	11	6.1	4.6	-
0.5	4.1	71	17	13	6.6	4.9	-
0.45	4.15	87	19	14	7.2	5.3	-
0.4	4.2	109	22	17	8	5.8	-
0.35	4.25	141	26	19	9	6.4	-
0.3	4.3	189	32	23	10	7.1	10.6
0.25	4.35	268	40	28	12	8.1	-
0.2	4.4	412	54	37	14	9.6	-
0.15	4.45	715	77	51	18	11.8	-
0.1	4.5	1558	129	82	26	15.8	40.5

[Ribas et al. ApJ, 2005; Güdel 2007; Lammer et al. EPS, 2011]

X-ray, SXR, EUV activity of M-stars

Solar EUV response of upper atmospheres

- Heating due to O_2 , N_2 , and O photoionization by solar XUV radiation ($\lambda \le 1027$ Å)
- Heating due to O_2 and O_3 photodissociation by solar UV radiation (1250 $\leq \lambda \leq$ 3500 Å)
- Chemical heating in exothermic binary and 3-body reactions
- Neutral gas molecular heat conduction
- IR-cooling in the vibrational-rotational bands of CO₂ (15 μm), NO, O₃, OH, NO⁺, ¹⁴N¹⁵N, CO, H₃⁺, etc. and 63 μm O line
- Heating and cooling due to contraction and expansion of the thermosphere
- Turbulent energy dissipation and heat conduction IWF/ÖAW GRAZ

Exobase temperature

[[]Shematovich et al. SSR, 2011; Lammer et al. EPS, 2011]

Magnetopause/exobase distances: early Earth with N_2/O_2 atmosphere

• Are N₂-rich atmospheres around Earth-size and mass planets stable during SXR and EUV exposure > 7 times that of the present Sun?

EUV	age	obstacle	$n_{ m N}^{ m obstacle}$	$T_{\rm exo}$	loss rate	loss rate
	[Ga b.p.]	$[R_{ m E}]$	$[\mathrm{cm}^{-3}]$	[K]	$[s^{-1}]$	[bar/Ma]
7^a	3.7	2.7 (MP)	8.6×10^4	7600	8.9×10^{29}	0.1
7^b	3.7	4.7 (MP)	$2.1 imes 10^4$	7600	$8.1 imes 10^{29}$	0.1
10	3.9	4.9 (Exo)	4.5×10^4	5600	1.9×10^{30}	0.3
20	4.2	12.7 (Exo)	1.5×10^4	2500	7.7×10^{30}	1.1
7^c	3.7	10.7 (MP)	3.7×10^3	7600	1.2×10^{29}	0.02
10^{c}	3.9	10.8 (MP)	6.5×10^3	5600	2.5×10^{29}	0.04
20^{c}	4.2	12.7 (Exo)	1.5×10^4	2500	8.4×10^{29}	0.1

Response of CO₂-rich and H-rich thermospheres

Extented upper atmospheres should be common features during SXR, EUV active stellar stages [Lammer et al. A&SS, 2011b]

- -dense hydrogen envelopes which remained from the primordial nebulae:
- -hydrogen-rich thermospheres produced via dissociation of CH₄, NH₃ and H₂O molecules;
- -ocean planets or planets which evaporate their initial H_2O reservoir;
- evaporation of H₂O oceans due to cometary or asteroidal impacts.

[e.g., Raymond et al. Astrobiology, 2007]

• Extented upper atmospheres may have dominated the planetary envrionment during 100s of Myr up to Gyr time scales IWF/ÖAW GRAZ 9

CIVE ENA-cloud observation and modelling a tool to study star-exoplanet interaction

Hydrogen coronae & ENA clouds around Hot Jupiters → see Poster K. G. Kislyakova,

M. L. Khodachenko, H. Lammer, I. Alexeev

- E. Belenkaya, J.-M. Grießmeier,
- M. Holmström, Yu. N. Kulikov,
- V. I. Shematovich, D. Bislikalo,
- A. Hanslmeier:

Transit observations and hydrogen and ENA-cloud modelling as a tool for exoplanet magnetic and plasma environment characterization

Velocity (km/s)

UV Lyman-α HST observations of HD 209458b

[Vidal Madjar et al. Nature, 2003; Vidal Madjar et al. ApJ, 2004; Ben-Jaffel & Hosseini ApJ, 2010; Linsky et al. ApJ, 2010]

Observations of energetic neutral hydrogen atoms and O and C beyond the Roche lobe

[Holmström et al. Nature, 2010; Ekenbäck et al. ApJ, 2010; Lammer et al. A&SS, 2011a]

ENA-cloud observation and modelling around Earth-size exoplanets

[Lammer et al. EPS, 2011] Production of H energetic neutral atoms (ENAs) and clouds around Earth-size exoplanets within M-star orbits

$$\begin{split} &H_{sw}^{+} + H_{pl} \rightarrow H_{sw}^{ENA} + H_{pl}^{+}, \ \rightarrow \text{ planetary hydrogen cloud & ENAs similar as at "hot Jupiters"} \\ &H_{sw}^{+} + N_{pl} \rightarrow H_{sw}^{ENA} + N_{pl}^{+}, \ \rightarrow \text{N}_{2} \text{ corona & stellar wind produced hydrogen ENAs} \\ &H_{sw}^{+} + O_{pl} \rightarrow H_{sw}^{ENA} + O_{pl}^{+}, \ \rightarrow \text{O corona & stellar wind produced hydrogen ENAs} \\ &H_{sw}^{+} + C_{pl} \rightarrow H_{sw}^{ENA} + C_{pl}^{+}, \ \rightarrow \text{C corona & stellar wind produced hydrogen ENAs} \end{split}$$

Observations of hydrogen clouds & ENAs with WSO-UV around Earth-size exoplanets within orbits of dwarf stars discovered by PLATO would enhance our understanding how the Earth's early atmosphere survived during the active young Sun period (e.g. role of magnetic obstacles, atmosphere composition, possible hydrogen envelopes, etc. \rightarrow how habitable worlds evolve!

WF Testing atmosphere evolution scenarios by H cloud & ENA observations

G stars

Hubble(HST)

in orbit

- Stellar plasma flow near gas giant depending on star-type and age (winds, CMEs, plasma torii, etc.)
- Magnetic of non-magnetic obstacles (shape, intrinsic/induced, ionopause)
- Structures of expanded atmospheres (cold & hot atoms, Roche lobe, etc.)

Test of theoretical models: Possible observations with present, and near future UV space observatories

Mstars

Larty terrestrial planets (e.g. early Venus, Earth)

> Earth or similar (habitable) exoplanets

Role of expanded upper atmospheres and ENA cloud production in the evolution of young terrestrial planets (e.g. early Venus or Earth, etc.

> Venus or similar exoplanets

PLATO: launch

2017-2018

WSO-UV launch 2014