The obliquities of the planetary systems detected with PLATO

Guillaume Hébrard

Institut d'Astrophysique de Paris Observatoire de Haute-Provence

PLATO Science Conference, February 24-25, 2011, Berlin

The obliquity is the spin-orbit angle

Rossiter-McLaughlin effect (1924) (see also Holt 1893)

Gaudi & Winn (2007)

2008: First case of spin-orbit misalignment

2009: Second case of spin-orbit misalignment

Moutou et al. (2009), Pont et al. (2009)

Examples of retrograde orbits

2011: ~ 40 observed spectroscopic transits over ~ 110 known transiting planets

15 misaligned systems, including 7 retrograde, 3 nearly polar

Why the obliquity of planetary orbit could change?

• KT: Kozai mechanism with Tidal circularization (Fabrycky & Tremaine 2007)
45% to 85% of hot jupiters are misaligned (Triaud et al. 2010):
Most hot jupiters are formed from KT rather than migration in disk

SKT: planet Scattering, Kozai mechanism, and Tidal circularization (Nagasawa et al. 2008)
2 modes (Morton & Johnson 2011): a part of planets migrated through disk migration (that preserve spin-orbit alignment) and another part (34% to 76%) migrated through SKT.

Or, why the inclination of the star could change?

- early on through magnetosphere-disk interactions (Lai et al. 2010)
- later through elliptical tidal instability (Cébron et al. 2011)

PLATO:

exploring the obliquity of low-mass and long-period planets

Hébrard et al. (2010)

Low-mass planets

Small planetary radius: Low-amplitude RM effect

RM anomaly amplitude: 1.5 m/s

P = 4.888 d $M_{p} = 26 \text{ M}_{earth}$ $R_{p} = 4.7 \text{ R}_{Earth}$ $v \sin i_{\star} = 1.0 \text{ km/s}$

Low-mass planets

Kepler-11	Mas	ses = [2.3 – 13.5] M _{Earth}		Radii = [2.0 – 4.5] R _{Earth}	
Planet	Transit duration	RM amplitude for vsin <i>i</i> =0.5km/s	RM amplitude for vsin <i>i</i> =4.0km/s	Keplerian amplitude <i>K</i>	Orbital period
	(hours)	(m/s)	(m/s)	(m/s)	(days)
Kepler-11b	4.0	0.1	1.1	1.3	10.3
Kepler-11c	4.6	0.3	2.8	3.8	13.0
Kepler-11d	5.6	0.4	3.3	1.4	22.7
Kepler-11e	4.3	0.7	5.7	1.7	32.0
Kepler-11f	6.5	0.2	1.9	0.4	46.7
Kepler-11g	9.6	0.5	3.7	-	118.4
PLATO-??	12.8	0.04	0.34	0.09	365.3

Spectroscopic transit for planet detection?

Radial velocity amplitude might be larger for the Rossiter-McLaughlin anomaly than for the Keplerian orbit.

And the duration of the event is shorter.

Doesn't depend on the semi-major axes: especially interesting for long-period planets.

One example: HD15082b (Collier Cameron et al. 2009)

Conclusions

- Obliquities constrain planetary formation and evolution models.
- Obliquities could be measured in spectroscopy through the Rossiter-McLaughlin anomaly.
- Available observations on hot jupiters jeopardizes disk migration as the standard/unique model explaining their origin.
- Obliquities measurements on PLATO planets will allow such studies to be extended on low-mass and long-period planets, and multiple-planets systems.
- It will require high-precision spectroscopic observations.
- Spectroscopic transits could be a way to establish the planetary nature of PLATO transiting objects in some cases where the Keplerian reflex motion is too low.