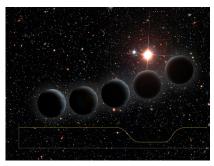

Terrestrial planet formation in the PLATO era

Anders Johansen and Melvyn B. Davies (Lund Observatory)


PLATO Science Conference Technische Universität Berlin, February 2011

Lund planet researchers: AJ, MBD, Ross Church, David Hobbs, Michiel Lambrechts, Kalle Jansson, Katrin Ros

PLATO and terrestrial planets

PLATO Next-generation planet finder

... to detect and characterize transiting exoplanetary systems of all kinds, in particular small, telluric planets in their habitable zones

 \Rightarrow PLATO will test our *fundamental* understanding of how systems of terrestrial planets form and evolve

Classical picture of terrestrial planet formation

Terrestrial planets form in protoplanetary discs around young stars from dust grains that collide and stick together

Dust to planetesimals

 $\mu m \rightarrow km\colon$ contact forces during collision lead to sticking

- Protoplanets to terrestrial planets Giant impacts (10⁷-10⁸ years)

An emerging new picture

Oust to pebbles

 $\mu m \to cm:$ contact forces during collision lead to sticking (Dullemond & Dominik 2005; Brauer et al. 2008)

Pebbles and rocks to protoplanets

 $km \to 1,000~km:$ spontaneous clumping and self-gravity (Johansen et al. 2007, 2009; Lyra et al. 2008)

Protoplanets to terrestrial planets

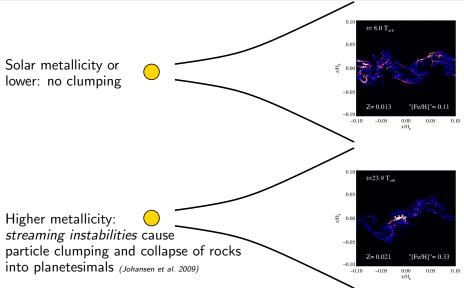
Giant impacts or pebble accretion

(Raymond et al. 2006; Johansen & Lacerda 2010)

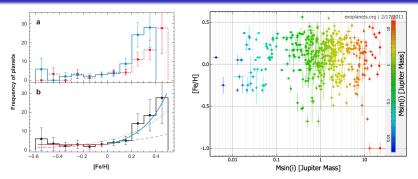
Migration and scattering

Migration due to torques from gas disc

(Nelson & Papaloizou 2005; Paardekooper & Mellema 2006)


Planet-planet and planet-planetesimal scattering

(Gomes et al. 2005; Tsiganis et al. 2005; Juric & Tremaine 2008)


Perturbations by passing stars or binary companions

(Malmberg et al. 2007; Malmberg, Davies, & Heggie 2011)

Metallicity trigger

Metallicity correlation of exoplanets

- Exoplanet frequency rises steeply with metallicity
- Correlation less pronounced for low mass planets?
- ⇒ Planetesimal formation triggered by photoevaporation (Johansen et al. 2009)
 - Photoevaporation-triggered planet formation may also explain Jupiter's overabundance of noble gases

(Guillot & Hueso 2006)

Low and high metallicity systems

High metallicity systems

- Planet formation is rapid
- Lots of time to accrete gas
- Moderate mass planets migrate and become hot Jupiters

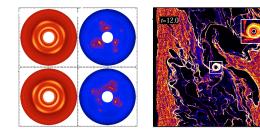
Solar (or lower) metallicity systems

- Planet formation triggered by photoevaporation (Throop & Bally 2005; Alexander & Armitage 2007)
- Little gas when planets form, so no strong migration

Low and high metallicity systems

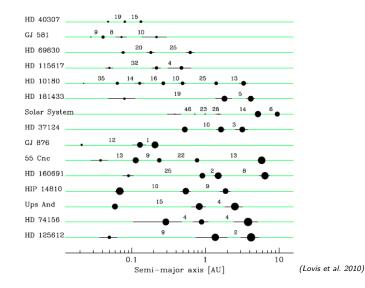
High metallicity systems

- Planet formation is rapid
- Lots of time to accrete gas
- Moderate mass planets migrate and become hot Jupiters


Solar (or lower) metallicity systems

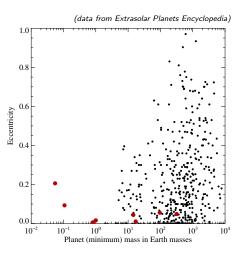
- Planet formation triggered by photoevaporation (Throop & Bally 2005; Alexander & Armitage 2007)
- Little gas when planets form, so no strong migration

- $\Rightarrow\,$ Predict that the solar system formed after the solar nebula had accreted or evaporated half of its H_2 and He gas
- ⇒ Predict that low-metallicity systems may preferably produce terrestrial planets and super-Earths

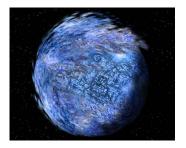

Planetesimals or protoplanets?

- Hydrodynamical simulations show that rocks and boulders concentrate strongly in turbulent gas flow (Johansen et al. 2006, 2007; Lyra et al. 2008, 2009)
- Overdense regions of rocks and boulders contract under their own weight into planetesimals
- Planetesimals accrete remaining rocks and boulders rapidly (Johansen & Lacerda 2010)

 \Rightarrow Rapid growth from protoplanets to terrestrial planets


Observed planetary systems

How to make eccentric planetary systems


Unstable planetary systems as:

- Planets are born too close to each other (Weidenschilling 1996)
- Planetary systems are perturbed by passing stars (Malmberg & Davies 2008)
- Planetary systems are perturbed by Kozai resonance with distant binary (Malmberg et al. 2007)
- ⇒ What about terrestrial planets?

Eccentricity and habitability

- Studying the observed eccentricity distribution of terrestrial planets can teach us about planet formation and about external perturbations
- Eccentricity also has implications for habitability

Planet formation theorists wish list for PLATO

 \Rightarrow PLATO could allow us to answer fundamental questions about e.g. how the terrestrial planet formation efficiency depends on metallicity and on how stable systems of terrestrial planets are

Planetary systems:

- Masses (RV follow-up)
- Radii (transits)
- Semi-major axes (transits)
- Eccentricities (RV)

Stars:

- Ages and radii (seismology)
- Metallicities
- Well-understood observational bias

