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"Planet Semi-Major Axis" vs "Planet Mass" (489)
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Planetary migration

Migration of planets can occur because of
various processes

- Gravitational interaction with protoplanetary disc
- Planet-planet scattering
- Kozai effect + tidal interaction with central star

- Scattering of planetesimals



semimajer axis

Low mass planets - type | migration

« Planet generates spiral waves in disc at
Lindblad resonances

» Gravitational interaction between planet and
spiral wakes causes exchange of angular
momentum

Semimajor axis versus time
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Population synthesis
+ type | migration

Type | migration
leads to “desert” of
low and intermediate
mass planets within
~ 2 AU, even when
attenuated by x 10
Rapid gas accretion
also reduces number
of intermediate mass
planets

This “planet desert”
Is inconsistent with
observations
Howard et al (2010)




Mordasini et al
(2009)

Svnthesis

Even with type |
migration switched
off the planet
desert is apparent




Forming hot Neptunes and super-earths via
accretion and migration

Question: Is it possible to form hot Neptunes and super-earths
that are consistent with the observations by combining standard
type | migration with oligarchic accretion ?

N-body simulations plus type | migration (McNeil & Nelson 2009, 2010)

Approximately 15000 planetesimals + approx 100 planetary embryos

Dissipating gas disc (time scale ~ 1-2 Myr)
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ax standard mass, flat disc, 1/3 migration speed, 2 Myr dissipation @ time = 4.00000000e+05 [yr]
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Mass versus semimajor axis

semimajor axis [Al]

Super-earths are formed
But no systems containing sufficient mass at small radii
(such as the systems GI581 or HD69830) were formed




Evidence for type | migration

SIS g S AMES Ee "Planet Semi-Major Axis" vs "Planet Mass" (59)
super-earths

> 50 planets with
m sini <40 M__,
(e.g. Gl 581- 4 planets)

« Disc model properties:
- mass of solids too small
within 1 AU
- planets must form further

out and migrate in
Planet Semi-Major Axis (AU
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 Type | migration does occur !
- but probably more slowly
than predicted by basic theory



Corotation torques

Corotation torques arise when gas interacts with planet while performing horseshoe orbits

Conservation of either specific vorticity (vorticity/density) and/or entropy during U-turn causes
change in density structure near planet

In optically thick discs corotation torque can exceed Lindblad torques - stalling or even
reversing type | migration (Paardekooper & Mellema 2007; Baruteau & Masset 2008; Pardekooper & Papaloizou 2008)



Effect of entropy gradient in disc

Sustaining the
corotation torque
requires viscosity &
radiative diffusion
to act on the

time scale of ~ %2 a
horseshoe orbital
period




Evolution of the torque with radiative diffusion

Tergques versus fime
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To prevent the entropy-related corotation torque from saturating,
require that local thermal and viscous diffusion times ~ horseshoe
libration time



Planets initially migrate to the zero migration
line. As gas disc disperses, this line moves in
slowly toward star
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If thermal relaxation time << horseshoe libration time =>» migrate inward
If thermal relaxation time >> horseshoe libration time =» migrate inward

If thermal relaxation time ~ horseshoe libration time = migrate outward



N-body simulations of oligarchic growth of planets with
migration and corotation torques (McNeil & Nelson — in prep.)

all planets by type | physics

) .‘.I'-a.ne.u.i-:a-in'-\;r.ar'd
cNeil-Nelson no E corr,
cNeil-Nelson with E corr.

(@) K no E corr.
@ PBK with E corr.

semimajor axis [AU]

The inclusion of corotation torques leads to formation of
more massive objects, and short period multiplanet systems
- convergent migration assists growth
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N-body simulations with migration, collisional growth and gas accretion
onto planetary COres (Hellary & Nelson — in prep)

* Planetary embryos + planetesimals
» Migration with corotation torques

» Gas settling onto planetary cores — enhanced planetesimal capture
(Inaba et al 2003)

» Gas accretion for cores with mass > 3 Earth masses (Movshovitz et al 2010)
* Transition to gap formation and type Il migration when

planet mass > Saturn’s mass

» Gas disc dispersal on time scale ~ 3 Myr
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Terrestrial Planet Formation During Giant
Planet Migration

N-body simulations performed (Fogg & Nelson 2005, 2006, 2009)

Initial conditions: inner solids disk undergoing different stages of
“oligarchic growth’ within a viscously evolving gas disc

Giant planet is introduced which migrates through inner planet-forming
disc



Masskey: @ 001-005M, @ 00501M, @ 01-05M @ 05-1.0M. @ 1.050M,

A possible formation scenario e
e W l l : _: ; = 1.0 Myr

for Kepler 11 (Fogg & Nelson 2009)
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Conclusions

« Significant progress has been made in understanding planetary
migration — but much work remains to be done (turbulence, dead
zones, etc...)

* Pop. synthesis models and N-body simulations with prescriptions for
migration, gas growth etc. are beginning to produce systems which
bracket the different exoplanetary system architectures that have been
observed — but their realism needs to be improved

* Developments in theory and modelling will allow a detailed
comparison between exoplanet data and planetary formation theory
on a time scale of a 2 - 5 years — just in time for the PLATO mission



Planetesimal evolution

Recent shearing box simulations indicate slow growth
in velocity dispersion of planetesimals due to
gravitational interaction with turbulent density
fluctuations (Yang, Maclow & Menou 2009)

How does velocity dispersion vary as function of box
size (or size of sphere of influence in global runs) ?

Once converged, what do simulations predict for the
equilibrium velocity dispersion for planetesimals of
different size ? How quickly do planetesimals diffuse
radially via a random walk ?

Do global simulations and local shearing box
simulations agree on outcomes ?



A few remarks about planetary growth...

For runaway growth require planetesimal velocity dispersion
to be significantly smaller than escape velocity from largest accreting
objects:

(_:Z-'r'rz...p 5

| 2G'm,,
‘ 1+ L
dt p<l )mrzp] ( ’D(l )4 )]

For 10 km sized bodies with p=2 g/cm?3 escape velocity=10 m/s

For <v> ~ 10 m/s collisions may lead to catastrophic disruption for km sized bodies
(Benz & Asphaug 1999; Stewart & Leinhardt 2009)



Turbulent disc simu
performed with 100
planetesimals whicl
evolve under influel
of gravitational field
disc and gas drag



Shearing boxsize requirements
S—

_.-"'.H-.-"'--. #
g : density

fluctuation

total stress

Maxwell stress

Reynolds stress

box size [H]
Boxsize =2 10H required to correctly model excitation,
propagation and non-linear steepening of spiral density waves
(Heinemann & Papaloizou 2009)
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Gravitational cut-off in global models
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Radial velocity dispersion for 25 planetesimals initially on circular orbits
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Convergence obtained when sphere of influence > 8 scale heights

- similar to convergence requirements for shearing boxes.



Autocorrelation function
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The box size and aspect ratio also affect the torque

autocorrelation function — and the measured correlation
time.

Small boxes allow spiral density waves to undergo
multiple interactions with embedded bodies before they

damp — creating an oscillation in the autocorrelation
function



Evolution with gas drag included

semimajor axis versus time — 1 metre (laminar)
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o(v,) in local and global simulations
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For local and global models with H/R=0.075, a=0.035,
we obtain a(v,) ~ 0.1 ¢, (where c, = 1 km/s) after 500 orbits

for 10 km sized planeteS|maIs.
Smaller bodies with size ~ 10 - 50 m achieve equilibrium

with a(v,) ~ 20 m/s
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Assuming that o(v,) ~ ab we find b ~ 1/4



Equilibrium o(v,) versus a
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Using fits: o(v,) = Co(v,) vVt and Co(v,) ~ a4
we can estimate equilibrium a(v,) as a function of a and
planetesimal size (lda, Guillot & Morbidelli 2008)

Catastrophic disruption threshold for collisions between 10km sized bodies
is ~10 — 20 m/s (Benz & Asphaug 1999; Stewart & Leinhardt 2009)



Radial migration/diffusion

10m sized bodies migrate inward rapidly due to gas drag.
Deviation from laminar case caused by surface density profile being
modified by radial variation in turbulent stresses. Stochastic forces

have little effect on migration rate.
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Predict that after 2 Myr of evolution, gas drag induced migration

will dominate stochastic migration for bodies of size < 100 m



100m, 1km & 10km bodies undergo radial diffusion/ stochastic
migration



Radial diffusion versus a
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Long-term orbital evolution of planetesimals

Torque Distribution — Tkm
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Asteroids in Solar System

relative abundance

0.5

semimajor axis (AU)

Gradie et al (1982)

Observations of asteroids in the
asteroid belt show that different
taxonomic classes are reasonably
well ordered as a function of
heliocentric distance

=» radial mixing in the Solar nebula
was relatively modest

Significant radial mixing of icy
asteroids would substantially

enhance water content of the
Earth (O'Brien et al 2007)



N-body simulations with stochastic
migration
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Planetesimal diffusian
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type | torque dominates random walk
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For mp=10 Earth masses we estimate that
t ~ 500t

type 1 corr

For mp=1 Earth mass t ~5x 104t

type 1 corr

Expect stochastic migration to dominate
over type | migration only for planets
with masses ~ Mars masses for

disc life times of 5 Myr



Does migration/torque correlate with local Persistent vortex-like features
surface density profile =» corotation torques appear in flow — long term
Results are inconclusive so far... impact on migration ?

but expect to observe corotation torques in

turbulent discs (Baruteau & Lin 2010)




Low mass planets in turbulent discs

10 M., iIn MMSN disc model
experiences strong
stochastic torques




Conclusions + future work

» Require box-size of ~ 8 - 10 scale-heights for stochastic forces to converge

* Planetesimal velocity dispersion shows minimum value of ~ 20 m/s for
bodies of size ~ 50m in disc with a=0.03

* For fully turbulent discs, velocity dispersion of > 1 km sized planetesimals
o(v) > 200 m/s
— collisional breakup and quenching of runaway and oligarchic growth

» Macroscopic bodies experience orbital diffusion on scales of a few AU
within expected gas disc life times

May be possible to use solar system data to constrain strength of
midplane turbulence and size of the dead zone (e.g. composition
gradients in asteroid belt)

» Stochastic forces can probably overcome standard type | migration only for
~ Mars mass planets, but turbulence must be present to prevent
saturation of corotation torques

 Future work: stratified discs (global and shearing box), with and without dead
zones, to examine velocity dispersion and radial migration as function of dead




There are two competing models for
explaining how giant planets form:

Gravitational instability model

- the protostellar disc fragments to form giant planets
directly

Core accretion model
- a large core composed of rock + ice forms first, and
then accretes a massive gaseous envelope



High mass protoplanets in laminar discs

*  When planets grow to ~ Jovian
mass they open gaps:

(i) The waves they excite
become shock waves
when Ry, >H

(i) Planet tidal torques exceed
viscous torques

* Inward migration occurs on
viscous evolution time scale of the
disk




Evidence for type |l migration

Existence of short period planets
(Hot Jupiters)
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Orbital Radius

Migrating Jovian Mass Protoplanet Mass of Accreting Frotoplanet
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Inward migration occurs on time scale of ~ few x 10° year
Jovian mass planets remain on ~ circular orbits

Heavier planets migrate more slowly than viscous rate
due to their inertia

A 1 M, planet accretes additional 2 — 3 M, during
migration time of ~ few x 10°yr



* Once planetesimals have formed,
runaway growth of the most massive
planetesimals leads to formation of
planetary embryos

* These cease accreting when they reach
their isolation mass ~ lunar mass at 1 AU

* Final phase of terrestrial planet formation
involves giant impacts between the
embryos



Raymond,
Mandel &
Sigurdson
(2006)
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The giant impact phase of terrestrial planet formation requires ~ 100 Myr
to complete — in good agreement with the radio-dating of lunar rock samples

But current N-body models tend to form a Mars analogue which is too big, and
the final planetary eccentricities are too large — simple hit+stick model for
accretion too crude



Giant planet formation
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core on the Kelvin-Helmholtz time scale as thermal energy is radiated

Accumulation of gas becomes more rapid once envelope
and core mass are approximately equal

Gas accretion enters runaway phase - final gas envelope is accumulated
within a few thousand years



Stopping/slowing type | migration

« MHD Turbulence will generate a random
walk - this may be able to overcome
type | migration

« Corotation torques may slow/stop planet
migration (Masset et al 2006; Paardekooper &
Mellema 2007; Paardekooper & Papaloizou 2008)




Terrestrial Planet Formation
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