PLAnetary Transits and Oscillations of stars

http://www.oact.inaf.it/plato/PPLC/Home.html

- Ultra-high precision photometric space mission

- Candidate M-class mission in ESA Cosmic Vision programme

PLATO Science Objectives

Main objectives:

- 1. detect and characterize exoplanets of all kinds around stars of all types and all ages including telluric planets in the habitable zone
- 2. provide full observational basis to study stellar evolution
- 3. enable very wide additional science programme: stellar rotation, stellar activity, binarity, circumstellar environments, etc.

Three complementary techniques:

- photometric transits : R_p/R_s (R_s known thanks to Gaia)
- groundbased follow-up in radial velocity : M_p/M_s
- seismic analysis of host-stars (stellar oscillations) : R_s, M_s, age
 - > measurement of radius and mass, hence of planet mean density
 - > measurement of age of host stars, hence of planetary systems

Tool:

- ultra-high precision, long, uninterrupted, CCD photometric monitoring of very large samples of bright stars: CoRoT - Kepler heritage
- bright stars: capability of seismic analysis and efficient groundbased follow-up

The PLATO challenge

- very large number of targets
- bright and very bright stars
- very long term monitoring
- ultra-high precision photometry

Noise level requirements for PLATO

8.0 x 10⁻⁵ in 1 hr for marginal transit detection (faint targets)

3.4 x 10⁻⁵ in 1 hr for high S/N transit measurement: also required for seismic analysis

Noise level requirements for PLATO

3.4 x 10⁻⁵ in 1 hr sufficient for seismic analysis

PLATO target samples Main focus of PLATO: Bright and nearby > 20,000 bright (~ $m_{v} \leq 11$) stars !! cool dwarfs/subgiants (>F5V&IV): exoplanet transits AND seismic analysis of their host stars AND ultra-high precision RV follow-up noise $< 3.4 \ 10^{-5}$ in 1hr >3,000 very bright >1,000 very bright for 3 years *(m_v≤8)* (*m*_V≤8) exoplanets cool dwarfs/subgiants cool dwarfs/subgiants around bright and nearby stars for >5 months for 3 years > 5,000 nearby M-dwarfs ($m_{\nu} \leq 15$) noise < 8. 10^{-4} in 1hr for 3 years + > 5.000 for 2-5 months > 245,000 cool dwarfs/subgiants (~ $m_{v} \leq 13$) + lists of additional exoplanet transits + RV follow-up targets presenting specific interest noise $< 8.10^{-5}$ in 1hr for 3 years

Instrumental Concept

- 32 « normal » cameras : cadence 25 sec
- 2 « fast » cameras : cadence 2.5 sec, 2 colours
- pupil 120 mm
- dynamical range: $4 \le m_V \le 16$

On board data treatment: 1 DPU /2 cameras + 1 ICU Science ground segment

Orbit around L2 Lagrangian point, 6+2 year lifetime

Concept of overlapping line of sight

4 groups of 8 cameras with offset lines of sight offset = 0.35 x field diameter

Optimization of number of stars at given noise level AND of number of stars at given magnitude

Observation strategy and sky coverage

1. two long pointings : 3 years or 2 years

2. « step&stare » phase (1 or 2 years) : *N* fields 2-5 months each

~ 50% of the sky !

Expected performances

as a function of noise level

cf presentation by Giampaolo Piotto this afternoon

	PLATO (4300 deg ²)		20,000 deg ²	KEPLER (100 deg ²)	
noise level (ppm/√hr)	nb of cool dwarfs & subgiants long monitoring	mv	nb of cool dwarfs & subgiants incl. step&stare	nb of cool dwarfs & subgiants	m _v
27	15,000	9.3 - 10.8	60,000	1,300	11.2
34	22,000 20,000	9.8 - 11.3	88,000		
80	292,000 _{245,000}	11.6 - 12.9	1,000,000	25,000	13.6
	1,300 _{1,000}	8	5,000 3,000	30	8
	36,000	11	145,000	1,300	11

as a function of magnitude

PLAnetary Transits and Oscillations of stars

http://www.oact.inaf.it/plato/PPLC/Home.html

Danke !

Expected noise level

