Structure and **Composition of Transiting super-Earths**

Frank W. Wagner^{1,2)}, Frank Sohl¹⁾, and Heike Rauer^{1,3)} 1) Institute of Planetary Research, German Aerospace Center (DLR), Berlin-Adlershof, Germany

- 2) Institute of Planetology, Westphalian Wilhelms-University of Muenster (WWU), Muenster, Germany
- 3) Center of Astronomy and Astrophysics, Berlin Institute of Technology (TUB), Berlin, Germany

Introduction

Over the last two decades, astronomers have discovered about thirty super-Earth-sized (1-10 M_{\oplus}) objects orbiting stars other than the Sun. In the recent years, modeling the interior structure has become a major task to characterize and classify these bodies. Two outstanding examples are CoRoT-7b and Kepler-10b, for which planetary radius *and* total mass have been measured. Both planets are in particular interesting due to their presumably terrestrial-type bulk composition.

Results

Mass-Radius Relationships and Transiting super-Earth-sized Exoplanets

Relationship between planetary mass and radius can be used to infer the bulk composition of an exoplanet Kepler-10b:

>Kepler-10b is a rocky planet under the assumption of a high surface temperature due to its close proximity ► As endmember scenarios an Earth-like bulk composition corresponding to an iron core of 32.6 wt.-% and a Mercury-like (70 wt.-% iron core) planet are barely possible A coreless silicate planet and a pure iron sphere can be ruled out

Here, we apply our model approach to investigate the internal structure, thermal state, and bulk composition of transiting super-Earth-sized exoplanets. Particularly by taking CoRoT-7b and Kepler-10b as typeexamples, we aim to determine the physical state of the deep interiors of rocky planets.

Model

Model Assumptions

Planets are considered...

➤as spherically symmetric and fully differentiated

≻in perfect mechanical equilibrium and thermal steady state **Model Constraints**

>Mean density obtained by transit and radial velocity measurements

➤Cosmochemistry

Structural Equations and Thermal Model

 \succ Mass, *m* $\frac{\mathrm{d}m}{\mathrm{d}r}$ $= 4\pi r^2 \rho$ \triangleright Pressure, P $= -\rho g$ \succ Gravity, g $\frac{\mathrm{d}g}{\mathrm{d}r} = 4\pi \mathrm{G}\rho - 2\frac{g}{r}$

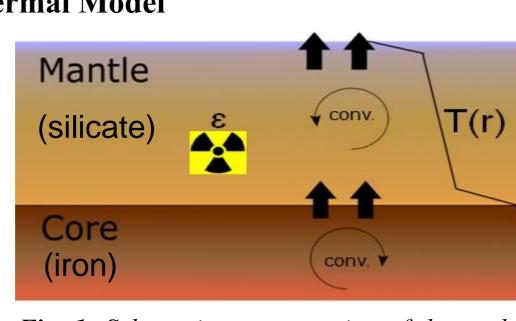
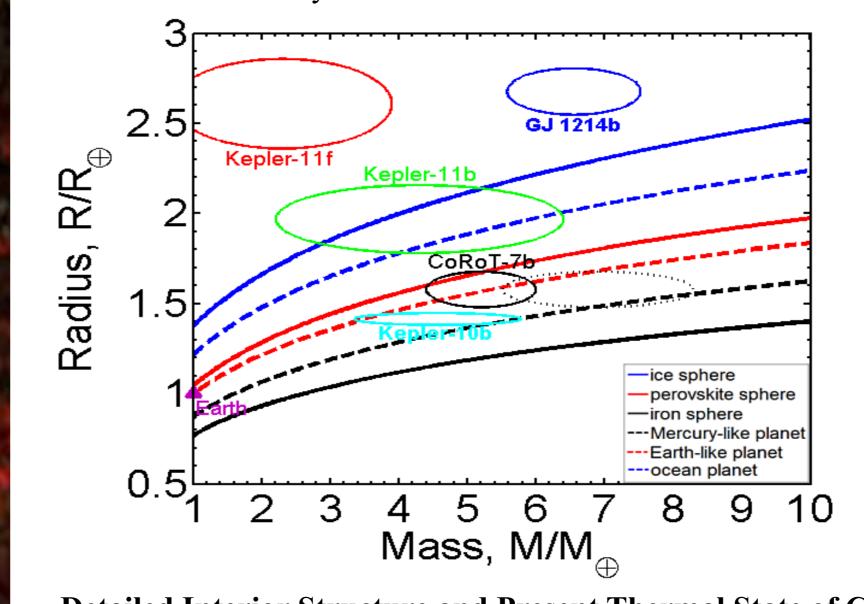
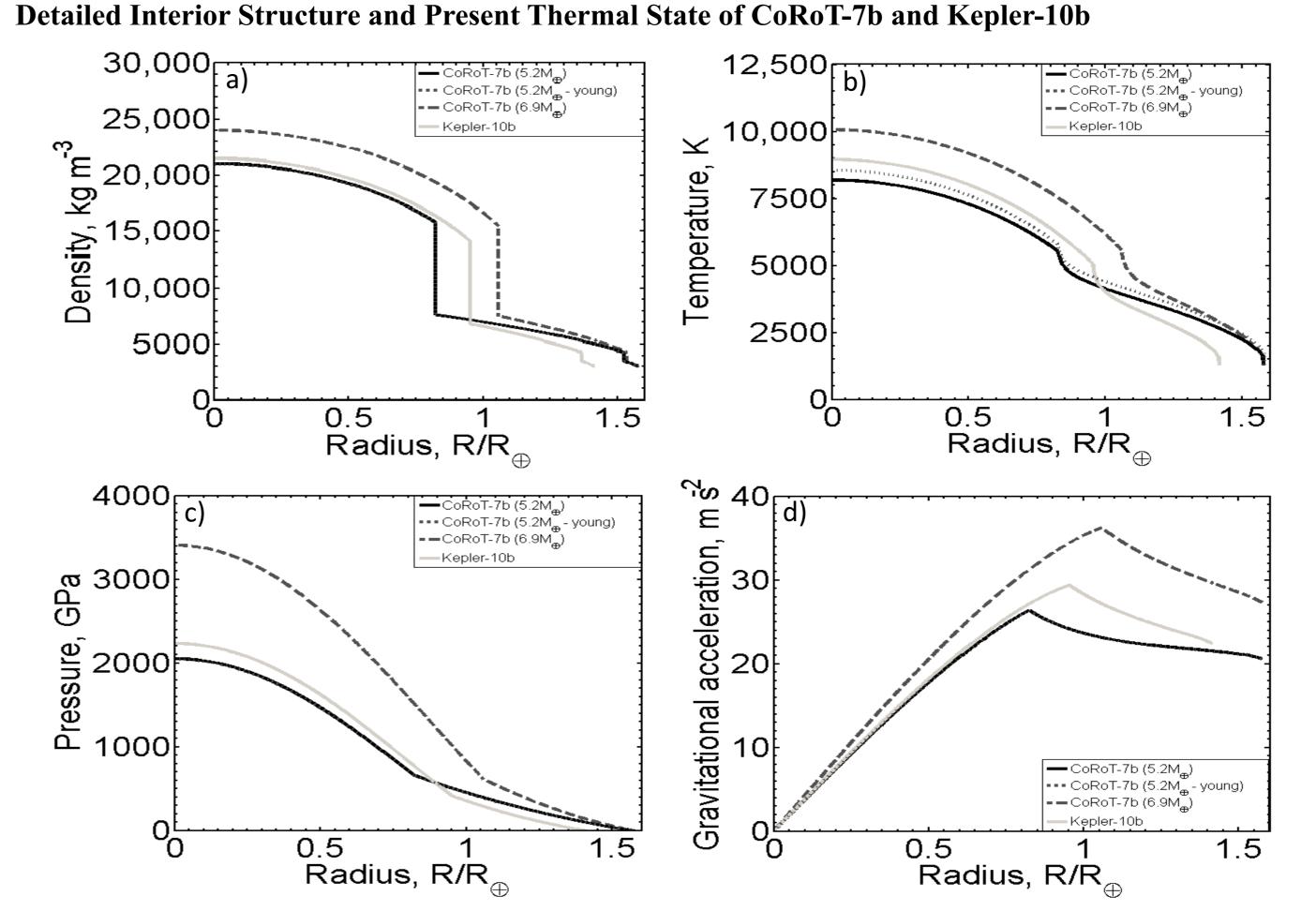
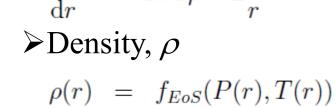


Fig. 1: Schematic representation of the model. A


CoRoT-7b:

> Taking a high surface temperature into account, CoRoT-7b is a dry and rocky planet


>Depending strongly on the actual planetary mass, a pure silicate planet is as possible as a Mercury-like body with a relatively high iron content


GJ 1214b, Kepler-11b, and Kepler-11f

>Low densities imply planets with extended atmospheres and a bulk composition similar to the gas giants within the solar system

2: Mass-radius relationships for differentiated exoplanets (dashed lines) and homogeneous, self-compressible spheres of water, silicate, and iron (solid lines). The triangle denotes the position of the Earth for orientation. The relative positions of transiting super-Earth-sized exoplanets with a measured mass and radius are indicated by solid ellipses of different colors. Whereas another possible solution [B] for the CoRoT-7b exoplanet is shown as dotted ellipse. The size of an ellipse corresponds to observational uncertainties. To determine the bulk composition of Earth-sized objects, highly precise instruments are needed, e.g. PLATO.

- \succ Heat flux, q
- \succ Temperature (mantle), *T*
- \succ Temperature (core), *T*

the mantle. $= \epsilon \rho - 2^{\frac{1}{2}}$ Nurk

mixing length formulation [1] is used to calculate self-consistently the effective heat transport within *r*: radius G: gravitational constant *Nu*_r: local Nusselt number k_c : thermal conductivity γ. Grueneisen gamma Φ : seismic parameter obtained from an EoS

Planet (model)	CoRoT-7b (C1)	CoRoT-7b (C2)	CoRoT-7b (C3)	Kepler-10b (K1)	Earth	Ref.
Mass $M_{ m p}$ [M $_{\oplus}$]	5.2±0.8	5.2±0.8	6.9±1.4	4.56 _{-1.29} ^{+1.17}	1.	A,B,C
Radius R_{p} [R $_{\oplus}$]	1.58±0.10	1.58±0.10	1.58±0.10	1.416-0.036+0.033	1.	A,C
Density (average) $ ho_{ m avg}$ [g cm ⁻³]	7.2±1.8	7.2±1.8	9.6±2.7	8.8-2.9+2.1	5.515	A,B,C
Temperature (surface) T _s [K]	1300	1300	1300	1300	300	assumed
Heat production rate ε [pW kg ⁻¹]	7.39	36.9	7.39	7.39	7.39	assumed
Pressure (surface) P _s [hPa]	0.	0.	0.	0.	1010	assumed

Tab. 1: Input parameters obtained from either observational measurements or reasonable assumptions.

Conclusions

It is concluded that CoRoT-7b and Kepler-10b are most likely dry and rocky planets with a terrestrial bulk composition. For the given planetary radius (1.58 R_{\oplus}) and total mass (5.2 M_{\oplus}), CoRoT-7b is expected to harbor an iron core of 35 wt.-%, which is similar to the Earth's (32.6 wt.-%). Assuming a planetary mass of 6.9 M_{\oplus} , calculations suggest a much larger iron core of 60 wt.-%. Furthermore, it is shown that radiogenic heating has a negligible effect on planetary structures. This finding implies that the interior structure of CoRoT-7b is independent of the internal heating rate. For Kepler-10b, our model yields a relatively high iron core mass fraction of 59.5 wt.-% in comparison to the Earth's, but similar massive as the second CoRoT-7b scenario. All other transiting exoplanets with measured properties $(M_p \text{ and } R_p)$ resemble hot gaseous planets due to their low mean densities.

Fig. 3: Depth-dependent interior structure models of CoRoT-7b and Kepler-10b: From upper left to lower right, the panels illustrate the calculated distribution of (a) density, (b) temperature, (c) hydrostatic pressure, and (d) acceleration of gravity, respectively.

Three CoRoT-7b and one Kepler-10b cases have been considered fitting the measured radius and mass Model C2 corresponds to a young CoRoT-7b with a high radiogenic heat production rate

► It can be seen that the heating rate only has minor effects on the interior structure

Tab. 2: Modeling results for CoRoT-7b and Kepler -10b. Values of the Earth are given for comparison.

Planet (model)	CoRoT-7b (C1)	CoRoT-7b (C2)	CoRoT-7b (C3)	Kepler-10b (K1)	Earth (ref.)
Core mass fraction cmb [wt%]	35	35	60	59.5	32.6 (D)
Mantle thickness D _m [km]	4820	4820	3330	2950	2890 (D)
Temperature (cmb) T _{cmb} [K]	5550	5800	5580	5060	3740 (D)

	Temperature (center) T _c [K]	8190	8560	10,100	8960	5030 (D)
	Heat flux (surface) q_s [mW m ⁻²]	129	599	123	106	65 (E)
	Heat flux (cmb) $q_{\rm cmb}$ [mW m ⁻²]	40.5	42.4	58.6	57.2	20 (F)
	Pressure (cmb) P _{cmb} [GPa]	656	654	615	410	136 (G)
	Pressure (center) <i>P</i> _c [GPa]	2050	2050	3410	2230	364 (G)
	Gravity (surface) g_s [m s ⁻²]	20.6	20.5	27.3	22.4	9.83 (G)

Acknowledgement

This research has been supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life".

References

[1] Sasaki, S. & Nakazawa, N. (1986): J. Geophys. Res. 91, 9231. [A] Bruntt, H., Deleuil, M., Fridlund, M., et al. (2010): Astron. & Astrophys. 519, A51. [B] Hatzes, A.P., Dvorak, R., Wuchterl, G., et al. (2010): Astron. & Astrophys. 520, A93. [C] Batalha, N.M., Borucki, W.J., Bryson, S.T., et al. (2011): Astrophys. J. 729, 27. [D] Stacey, F.D. & Davis, P.M. (2008): Physics of the Earth, Cambridge University Press. [E] Pollack, H.N., Hurter, S.J., Johnson, J.R. (1993): Rev. Geophys. 31, 267. [F] Sleep, N.H. (1990): J. Geophys. Res. 95, 6715. [G] Dziewonski, A.M. & Anderson, D.L. (1981): Phys. Earth Planet. Inter. 25, 297.

WESTFÄLISCHE

Münster

WILHELMS-UNIVERSITÄT