Atmospheric Biomarkers

John Lee Grenfell Technische Universität Berlin

Atmospheric Biomarkers Overview of Talk

- The Diversity of Life on Earth
- Historical Context the Many Worlds and Life Debate
- Methods for finding Biomarkers (life-indicators)
- Atmospheric Biomarkers
- Learning from the Solar System
- Going beyond the Solar System
- Summary and Conclusions

Diversity of Life on Earth

Plurality (Many) Worlds Debate in Ancient Greece

Atomist School ... the atom being infinite in number, forms an infinite number of worlds (Democritus, Epicurus)

Aristotlean School ... a unique creator implies unique creation

Democritus of Abdera c. 400 BC

Famous Astronomers' views on plurality Nikolaus Copernicus (1473-1543) ...never mentions the question of plurality

Galileo Galilei (1564-1642) ...if life exists on the moon it must be far beyond our imagining

Johannes Kepler (1571-1630) ...humankind is the predominant creature in the universe

Isaac Newton (1643-1727) ...if the fixed stars are the centres of other like systems

Galileo explaining lunar topography to two cardinals (artist : Jean Leon Huens)

Defining life Classical Definition: Homeostasis Organisation **Metabolism** Growth Adaption Reproduction **Response to Stimuli**

Defining life Classical Definition: Homeostasis Organisation **Metabolism** Growth Adaption Reproduction **Response to Stimuli**

Defining life Classical Definition: Homeostasis Organisation Metabolism Growth Adaption Reproduction **Response to Stimuli**

Defining life ... is not easy **Classical Definition:** Homeostasis Organisation **Metabolism** Growth Adaption Reproduction Response to Stimuli

Defining life ... is not easy **Classical Definition:** Homeostasis Organisation **Metabolism** Growth Adaption Reproduction Response to Stimuli

> Modern Definition: Genetics and Evolution

Some definitions

Biomarker

In Astrobiology: evidence of life

(In Medicine: tracer to examine health)

(In Geology: biology involved in petroleum formation)

Biosignature

Usually synonymous with biomarker

Bioindicator

In Astrobiology: could be life but probably need more info (e.g. large O_2 alone does not neccesarily mean life)

In-Situ Biomarkers: Ancient Fossils

stromatolites

methanogens

cyanobacteria

e.g. Westall et al. (2001)

source: softpedia, course gG100, geology.wisc.edu, cosmology.net

Life (protein) SPIKES

Lovelock (1965)

1.0

8

0-5

In-Situ Biomarkers: Chirality

Pasteur found that life is *chiral-specific* Why?

One theory: magnetised dust grains induce chirality in life precursors (amino acids)

CHIRALITY AS REMOTE BIOMARKER?

Polarisation signal of Earthshine Sterzik (2009) ASP 420, need 10⁻⁵ accurac

Review: Keszthelyi (2001)

In-Situ Biomarkers: Isotope Ratios

-life (mostly) favours the lighter isotopes of H,C,N,S

-enzyme kinetic isotope effect influences transition state

-isotopic biofractionation signal results

Schidlowski (1999) Adv. Spa. Res. 15,441 Kohen et al. (2010)

"Remote" Biomarkers: Entropy Production

Life produces *high entropy* to maintain its order, so $\Delta G^{\circ} (= \Delta H^{\circ} - T\Delta S^{\circ})$ is lowered But, since, $\Delta G_{\circ} = - RTIn(K)$ Atmosphere with life moves away from chemical equilibrium *Kleidon (2011) Phil. Trans. Theory: Earth Simoncini (2010) EPSC Catling (2011) (in preparation) for Solar System*

Caution: however, all atmospheres are out of chemical equil. to some degree (photochemistry, cool temperatures)

Remote Biomarkers: Red Edge for Vegetation

Arnold et al. (2002) Woolf et al. (2002) Seager et al. (2005)

Remote Atmospheric Biomarkers: Chemical Anomalies

Sagan et al. (1993) Lovelock (1965)

Remote Biomarkers: Atmospheric Species

Diomarker/Diomuicator	B	iom	ar	ker	/Bi	oir	ndi	icat	or
-----------------------	---	-----	----	------------	-----	-----	-----	------	----

Oxygen (O_2) (hence O_3)

Nitrous oxide (N₂O)

Chloromethane (CH₃CI)

Carbonyl Sulphide (COS)

Methane CH₄ (possibly)

Source

Photosynthesis

Denitrifying bacteria

Vegetation (Yokouchi et al.)

Vegetation (Andraea et al.)

Methanogenic bacteria

Biological activity influencing O₂ in Earth's atmosphere

Photosynthesis-Respiration equation $H_2O+CO_2 \rightleftharpoons "CH_2O" + O_2$ NET O₂ Sources controlled via geology (burial in ocean) O₂ Sinks: weathering, reducing gases

0.1 1 50

Ocean: Chlorophyll production (mg/m³) Land: Vegetation index (NASA)

Oxygen or Ozone as Spectral Biomarkers?

'PAL' = 'times the Present Atmospheric Level'
O₃ signal remains strong down to at least 10⁻² PAL of O₂ due to nonlinear chemistry and stratosphere cooling
Ozone is the better spectral biomarker
A. Segura et al. Astrobiology (2003)

Atmospheric Biomarkers: Earth's Ozone Layer

Source: 2D Model SOCRATES

Nitrous Oxide (N₂O) in Earth's Atmosphere

Vere Early Earth Oceans a strong Source of N₂O

Canfield Ocean: Buick (2007) 📗

Grenfell et al. Icarus 211, 81-88, (2011)

False Positives (cont.) Nitrous oxide (N₂O) non-life sources: $N_2+O^*+M \rightarrow N_2O+M$ (JPL Report, 2006) $NO_3 + N_2 \rightarrow N_2O + NO_2$ $O_3^*+N_2 \rightarrow N_2O+O_2$ (Prasad 2008) Probably very slow cf biology but need improved kinetic data

Chloromethane (CH₃Cl) source(s): (CH₄+Cl₂ \rightarrow CH₃Cl+Cl) false positive if CH₄, Cl₂ from outgassing CH₃Cl loss via OH and hv, >x10 faster than methane

Methane – Biomarker or false positive? Methane on Mars (?) Methane Sources on Earth

source: NASA (Keck, M. Mumma)

Review (Mars): Zahnle et al. (2011) - remove telluric lines Problems understanding CH₄ photochem. lifetime on Mars

False Negative

Life is there but we don't see it because it is hidden e.g. by thick clouds or by interfering absorption bands (or it doesn't want to be found...)

Biomarkers: Learning from the Solar System

Mars and Mars-like Atmospheres Oxygen: (1x10⁻³) (Barker, 1972) Ozone: (1-80x10⁻⁸) (Barth and Hord, 1971) Methane (a few tens of ppbv?)

Hydrogen Peroxide: ~10⁻⁸ (Encrenaz et al. 2004) Anti-biomaker

TO DISTINGUISH CASES (1) AND (2) Need more information (e.g. H₂O to estimate HOx cycles)

Biomarkers: Learning from the Solar System Venus and Venus-like Atmospheres Oxygen: (1x10⁻³) (Barker, 1972) Ozone: Thin, 100km O₃ layer (Montmessin, AAS 442)

Large [COS] abundance in troposphere ~few ppm (Svedhem et al. (2007) -Probably volcanic BUT on Earth it is a biomarker

Biomarkers: Learning from the Solar System Earth and Earth-like Atmospheres

• Earthshine (e.g. Palle 2002)

Basis for chemical disequilibrium and entropy biomarkers Model studies: "moving the Earth"

(Segura et al., 2003; Grenfell et al. 2007; Rauer et al. 2011)

• Early Earth

e.g. Earth in time (Kaltenegger et al. (2007)

Titan – Reducing Atmospheres

 Low C₂H₂, H₂ abundances *could* be interpreted as biomarkers (bugs eating them) (but, difficult to establish this)

Beyond the Solar System

Beyond the Solar System

Recent Biomarker Studies

Earth-like Planet in Habitable Zone of M-Dwarf Star

tidally-locked possibly weak protection high cosmic ray input

Planet has constant day and constant night hemispheres. Can atmosphere survive? What about Cosmic Rays/Transport/Biomarkers?

Potential biosignatures in Superearth atmospheres M0 3800K Rauer et al. (2011) A&A 529 A8

10M (3g)

M7 2500K Assume an Earthlike development (1bar at surface, Earth biomass) see Grenfell et al. (2011) in preparation for photochemical responses

Contrast Ratios for Ozone (9.6µm) Band

Effect of M-Dwarf Stellar Cosmic Rays on Biomarkers

Effect of Cosmic Rays on O₃ in Earth's Atmosphere

Downward transport NO survives in dark

3D mixing to mid latitudes Biomarker chemistry

Exoplanet Case

3D circulation of e.g. Earth-like planet around M-dwarf not well-known

Summary and Conclusions

- There are a wide range of biomarker criteria which should be applied together for best results
- Desirable to improve atmospheric models with e.g. more accurate stellar spectra and ages, developmental scenarios, photochemical kinetics, radiation transfer, outgassing, escape etc.
- In future couple with interior (outgassing) models, escape models etc (HGF alliance)

Diversity of Life on Earth

