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Super-Earths in the context of 
exoplanets

Super-Earths complete 
the inventory of planets 

for formation models

Intermediate objects 
that allow for 

comparative planetology

May be habitable 
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Super-Earths

Measured masses and 
radii of Super-Earths 

About 15% of stars 
have SE planets 

(perhaps up to 40%)

Spectroscopy of 
super-Earths

Borucki, ‘10
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Data & Challenges
Period & estimates of Teff, Age

Minimum Mass -- RV surveys
Radius Only -- Kepler Candidates

M & R 
Coarse Spectroscopy

Phase Curves

Complexity in Composition
Complex Dynamic Interiors

Complex Atmospheres
Few data points in the Solar System
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Characterizing super-Earths
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Characterizing super-Earths

How do they form?

What is their atmosphere like?

Are they habitable?

Single Planets                  Population

How do they evolve?

What are 
they made of?
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Now we have M & R + P, Teff,Age 
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The First Transiting super-Earths
CoRoT-

7b Kepler-10b 55Cnc-e GJ 1214b

Radius (RE) 1.58 ± 0.1 1.416 -0.036

1.63 ± 0.16

2.13 -0.14

2.678 ± 0.13
2.27 ± 0.08

Mass(ME)
4.8 ± 0.8, 6.9 ± 1.5
8.0±1.2 , 5.7 ± 2.5, 

2.3 ± 1.8
7.26 ± 1.36

4.56 -1.26

8.57 ± 0.64

8.0 ± 0.7 

6.55 ± 0.98

Period (j) 0.854 0.837 0.74 1.58

Age (Gy) 1.2 - 2.3 11.9 (± 4.5) ~ 5 3-10

Temp (K) 1800 1800 2000 393-555

Ref.
Leger et al ’09, Queloz et al 

’09, Pont et al 10’, Hatzes et al 
’10 & ’11, Boise et al ’10, 
Ferraz-Mello et al ’10

Batalha et al 2010
Winn et al 2011

Demory et al 2011
Charbonneau et al 
2009, Carter et al 

2011

+0.033

+1.17

+0.13
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Recipe: Internal Structure Model

Solve structure equations 
(M, ρ, P, g, T, S)

Assume a  composition

Need an EQUATION OF STATE 

 Si, O, Mg, FeH2O, CH4,..H-He
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Recipe: Internal Structure Model

Solve structure equations 
(M, ρ, P, g, T, S)

Obtain:  R(M; χ)

Assume a  composition

Need an EQUATION OF STATE 

 Si, O, Mg, FeH2O, CH4,..H-He
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Recipe: Internal Structure Model

Solve structure equations 
(M, ρ, P, g, T, S)

Obtain:  R(M; χ)

Assume a  composition

Need an EQUATION OF STATE 

 Si, O, Mg, FeH2O, CH4,..H-He

Valencia et al ’06, Fortney et al ’07, Grasset et al ’07, Seager et al ‘07, 
Valencia et al ‘10, Rogers and Seager ’10, Nettlemann & Fortney ’10, 

Wagner et al 2011
Tuesday, June 7, 2011



Super-Earth Composition
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(Mg,Fe)2SiO4 + (Mg,Fe)2Si2O6

Earth’s Structure:
Olivine + Pyroxene

Perovskite +  Magnesiowustite

Post - Perovskite +  Magnesiowustite

Iron + alloy

Iron-Nickel

(Mg,Fe)SiO3 + (Mg,Fe)O

(Mg,Fe)SiO3 + (Mg,Fe)O

Fe + (S, Si, O, H, C)

M
A

N
TL

E
CO

RE
Fe, Mg, Si, O, Ca, Al,Ti
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Variety in Rocky Compositions
Fe, Mg, Si, O, Ca, Al, Ti

1. The planet has an Fe/Si, Fe/Mg ... budget
which depends on its formation inventory and subsequent 

early evolution (giant impacts + atmospheric erosion)
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Variety in Rocky Compositions
Fe, Mg, Si, O, Ca, Al, Ti

1. The planet has an Fe/Si, Fe/Mg ... budget
which depends on its formation inventory and subsequent 

early evolution (giant impacts + atmospheric erosion)

Iron no-iron 
(pure Mg-
silicate)

Earth-likeIron-rich
(65% iron core

37 silicate mantle, no iron)

(33% iron core
67 silicate mantle, 
10% iron by mol)
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Variety in Rocky Compositions

2. Differentiated vs Undifferentiated planet

M=5.6M

Rp=1.68R silicate
mantle

silicate
Planet

M=5.3M

iron 
solid
core

Rcmb=0.86R

silicate atmosphere

For CoRoT-7b first 
reported mass value

Valencia et al, 2010; see 
also Tanton-Elkins and 

Seager 2009 for a 
mechanism for a coreless 

planet
Tuesday, June 7, 2011



super-M
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Rocky Compositions

For a probable 
upper limit to the 
Fe/Si lower ratio 
see Marcus et al 

’10
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Rocky Compositions
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What about their envelopes ?

T=2500 @ 10 bars

Valencia et al, 2010, Valencia 2011, Demory et al 2011
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What about their envelopes ?

T=2500 @ 10 bars

Valencia et al, 2010, Valencia 2011, Demory et al 2011
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Atmospheric Erosion

Energy limited calculation based on UV flux

dM = 3εFEUV    =  1011 g/s
 dt    4 GρKtide

within an order of magnitude of the escape rate 
of HD 209458b

Even if it has a silicate atmosphere, it is thick 
enough for UV absorption

For more details on ε 
see Lammer et al 09
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What about their envelopes ?

T=2500 @ 10 bars T=2500 @ 10 bars
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What about their envelopes ?

Evaporation 
Timescale ~ 1 Gy
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What about their envelopes ?

Evaporation 
Timescale ~ 1 Gy

Evaporation 
Timescale ~ 1 My!
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CoRoT-7b’s origin?
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CoRoT-7b’s origin?
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Rocky or Vapor?
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Radius = 2.678 ± 0.13 REarth

Mass = 6.55 ± 0.98 MEarth

Period = 1.58 days 
Age = 3-10 Gy
T = 393-555 K

Charbonneau et al 2009

GJ 1214b
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GJ 1214b’s atmosphere

from Miller-Ricci-
Kempton et al ’11
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GJ 1214b’s atmosphere

from Miller-Ricci-
Kempton et al ’11

Miller-Ricci & Fortney 2010
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GJ 1214b Composition

T=1000 @ 10 bars
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GJ 1214b Composition

T=1000 @ 10 bars
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GJ 1214b Composition

Because we expect 
some component of 
rocky material, GJ 
1214b has some H-He.

T=1000 @ 10 bars
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GJ 1214b Composition

Because we expect 
some component of 
rocky material, GJ 
1214b has some H-He.

T=1000 @ 10 bars
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We calculate that 
H-He is present in 
amounts less than ~8%

see also Rogers and Seager 2010
 Nettlemann & Fortney 2010
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GJ1214b: Unfolding picture

Observations at the ~ millibar level

From discovery 
paper: 
Atmosphere
probably has 
H-He

With small R (from Carter et al ’11), 
very little room for H-He

low or high 
molecular weight 
atmosphere?

What is the 
composition of the 
nucleus?

Interior models 
start ~ bar level
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Summary I
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Summary I
 We have now a handful of hot transiting super-Earths.
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Summary I
 We have now a handful of hot transiting super-Earths.
 The composition of planets reflects their initial formation 
inventory and secondary formation processes (i.e. giant 
impacts, atmospheric escape).
 The composition of CoRoT-7b and Kepler-10b is very similar:  
iron-enriched (by ~3x compared to Earth)
  55Cnc-e is a vapor planet with an H2O-rich envelope of ~20% 
by mass
  GJ1214b undoubtedly has a volatile envelope. The 
observations of the atmosphere seem to be (somewhat) 
conflicting about its composition. Interior models predict at 
most ~10% of H-He by planetary mass.  
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Characterizing super-Earths

How do they form?

What is their atmosphere like?

Are they habitable?

Single Planets                  Population

How do they evolve?

What are 
they made of?
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Terrestrial Evolution
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Plate Tectonics

Strong, coherent plate; deformation on boundaries
 PT is the surface expression of mantle convection

PT has enabled the C-Si cycle to operate (which acts 
as a thermostat) on Earth over geological timescales 

Walker 1981, Kasting 1996 
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Interior dynamics and the atmosphere
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Interior dynamics and the atmosphere

Ra

velocity
stress
plate thickness
plate length

Stress comes 
from convection

Coulomb failure criterion for plate deformationN
Fres

Mg
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O’Neill & Lenardic ‘07:  at most 
in an episodic regime

Argue that faults are too 
strong due to high g

O’Neill & Lenardic, 2007

Scaling Factor = R/RE
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Valencia et al ’07: more likely to have PT, based on 
thinner planets and larger convective stresses
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Valencia & O’Connell ’09: faults do become stronger 
but driving stresses can overcome the plates 

resistance to deformation
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Korenaga 2010: even though SE might have better 
conditions, the most important factor is to have a 
low coefficient of friction, which can be achieved 
with water

Korenaga 2010
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Plate Tectonics on Exo-Earths?

Van Heck & Tackley, 2009R/RE=2
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Summary II
  Low-mass planets evolve habitable conditions.
  Their atmosphere is tied to interior dynamics, expect diversity!
  Plate Tectonics on SE is under debate: role of water, role of surface 
temperature, depth dependent rheology, etc...
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