Disk-Planet Interaction

Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen

Eberhard Karls UNIVERSITÄT TÜBINGEN

7. June, 2011

Introduction
Migration
Princple
Disk Thermodynamics
Dynamical evolution
Eccentricity & Inclination
Summary

(A. Crida)

1

Exoplanets

Planetary Systems

Epikur (ca. 341-270 BC) "There is an infinite number of worlds, some similar to ours some very different."

Architecture shaping by Disk-Planet interaction!

W. Kley

Exoplanets Mass and Distance

- Not possible to form hot Jupiters in situ
 - disk too hot for material to condense
 - not enough material
- Difficult to form massive planets
 - gap formation

But planets grow in disks:

 \Rightarrow Have a closer look at planet-disk interaction

Disk-Planet

Disk-Planet Lindblad Torques

Planet with 20 M_{Earth} in protoplanetary Disk Hydrodynamical Simulation Disk with constant density

(Masset, 2002)

Dependence on Temperature, c_s

(Masset, 2002)

Planet generates spiral waves in the density of the disk

Spirals are maxima of density Gravitational interaction with planet Inner Spiral

- pulls planet forward:
- positive torque
- **Outer Spiral**
 - pulls planet backward:
 - negative torque
- \longrightarrow Net Torque
- \Longrightarrow Migration

Most important: Strength & Direction ?

Disk-Planet

Corotation Torques

3 Regions Outer disk (spiral) Inner disk (spiral) → Lindblad torques

 $\begin{array}{l} \text{Horseshoe} \text{ (coorbital)} \\ \implies \text{Corotation Torques} \end{array}$

Efficiency:

- Difference:

inward-outward kick

Scaling with:

- Vortensity gradient
- Entropy gradient

(F. Masset)

Axisymmetric, constant density disk, differential rotation with $\Omega(r)$ Decompose the planet potential

$$\psi_p(r,\varphi,t) = \sum_{m=0}^{\infty} \psi_m(r) \cos\{m[\varphi - \varphi_p(t)]\}$$

 $\varphi_p = \Omega_p t$ Azimuth angle of the planet $\psi_m(r)$: *m*-folded potential, rotating with pattern-speed Ω_p Frequency of potential in matter frame $\omega = m(\Omega(r) - \Omega_p)$ Response when ω matches either 0 or $\pm \kappa$

(κ epicyclic frequency)

 $\omega = \pm \kappa$: Outer or Inner Lindblad Resonance (Spirals) $\omega = 0$: Corotation Resonance (Horseshoe) Linearize hydrodynamic equations (Goldreich & Tremaine; Lin & Papaloizou)

Disk-Planet Lindblad torques

$$\Gamma_{tot} = \int_{disk} \Sigma(\vec{r} \times \nabla \psi_p) \, df = \int_{disk} \sum_m \Sigma \frac{\partial \psi_m}{\partial \varphi} df = \sum_m \Gamma_m$$

Absolute value of Torque $|\Gamma_m|$ due to spirals for each mode m

W. Kley

Bad Honnef: 7. June, 2011

P

Migration Migration rate (Lindblad Torques)

$$\frac{1}{a_{\rm P}}\frac{da_{\rm P}}{dt} = \frac{1}{\tau_{\rm M}} = 2\frac{\Gamma}{L_{\rm P}} \tag{1}$$

Lindblad torques: 3D results from spirals (Tanaka et al. 2002)

$$\Gamma_{\rm L} = -(2.34 - 0.1\alpha_{\Sigma})\Gamma_0 \quad \text{with} \quad \Gamma_0 = \left(\frac{m_{\rm P}}{M_*}\right)^2 \left(\frac{H}{r}\right)^{-2} \Sigma_{\rm p} a_{\rm p}^4 \,\Omega_{\rm P}^2 \qquad (2)$$

with density slope $\Sigma \propto r^{-\alpha_{\Sigma}}$ (3)

Time scale: 1 M_{Earth} at 1 AU: 10⁵ Years (shorter than growth time)

$$\Gamma_{\rm CR} \propto \frac{d}{dr} \left(\frac{\Sigma}{B}\right)$$
 (4)

Where *B* is the 2nd Oort constant. Note: B/Σ is specific vorticity

Corotation torques: from horseshoe region (Tanaka et al. 2002)

$$\Gamma_{\rm CR} = 1.36 \, \left(\frac{3}{2} - \alpha_{\Sigma}\right) \Gamma_0 \tag{5}$$

Total torque (spirals and corotation)

$$\Gamma = \Gamma_{\rm L} + \Gamma_{\rm CR} \tag{6}$$

Typically: $|\Gamma_{\rm CR}| < |\Gamma_{\rm L}|$ Inward migration NOTE: In MMSN $\Sigma \propto r^{-3/2}$, i.e. $\alpha_{\Sigma} = 1.5 \Longrightarrow \Gamma_{\rm CR} = 0$

In linear theory: Migration inward and rapid !

Migration

$$\begin{split} M_{\rm p} &= 0.01 \ M_{\rm Jup} \\ M_{\rm p} &= 0.03 \ M_{\rm Jup} \\ M_{\rm p} &= 0.1 \ M_{\rm Jup} \\ M_{\rm p} &= 0.3 \ M_{\rm Jup} \\ M_{\rm p} &= 1.0 \ M_{\rm Jup} \end{split}$$

Depth depends on Planet Mass

Torques reduced: Migration slows Type I \Rightarrow Type II

linear \Rightarrow non-linear

Migration

Disk-Planet

Green Dot: Planet Green Line: **Roche-Lobe**

 $m_{\rm p}$ = 1 $M_{\rm Jup}$ $a_{\rm p} = 5.2 \text{ AE}$

Flow-Field \longrightarrow Mass growth up to a few $M_{\rm Jup}$ → prograde rotation

```
(WK, 2000)
```


Migration too efficient!

Only strong reduction of Type I (C_1) gives reasonable results (Ida & Lin; Mordasini, <u>Alibert & Benz</u>)

- \Rightarrow Need improvements:
 - stochastic migration
 - inviscid, self-grav. discs
 - here: radiative disks

Add disk physics (2D)

W. Kley

Torque Saturation

W. Kley

Migration Radial Torques density

3D-simulations, radiative diffusion, 20 M_{Earth} planet (Kley,Bitsch&Klahr '09) $\Gamma(r)$, with $\Gamma_{tot} = \int \Gamma(r) dr$ Radiative: \Rightarrow additional positive contrib.

W. Kley

Bad Honnef: 7. June, 2011

Migration Spatial origin of torques ($r - \varphi$ plot)

Perturbed Density

 $(\Sigma - \Sigma_0) / \Sigma_0$

L Y

Net Torque contributions

 $\pm \left(\Gamma(r,\varphi_p + \varphi) - \Gamma(r,\varphi_p - \varphi) \right)$

Distant planets

Mass dependence

Isothermal and radiative models Outward migration for $M_p \leq 35M_{Earth}$

Distant planets

Range of outward migration

Place planets at various distances (Bitsch & Kley, 2011)

Influence of viscosity

Fixed planet (mp=20 Mearth), Vary alpha

Migration Summary Migration (Type I,II)

Planet-disk interaction: Torques on Planet Isothermal Migration is inward & rapid (lose planets)

But:
$$\Gamma_{tot} = \Gamma_L + \Gamma_{HS,ent} + \Gamma_{HS,vort}$$

Outward in radiative disks
Mass limit due to gap opening
Driven by:
Vortensity gradient

Entropy gradient maintained by:

- rad. diffusion (or cooling)
- cooling time \approx libration time

Need viscosity

Approximate torque formula: Masset, Casoli & Paardekooper ea 2010 Helps to prevent loss of planets see Talk: Y. Alibert **Eccentricity** Distribution

Eccentricity

Low mass Planets on eccentric Orbits

Torque on planet due to disk

$$\Gamma_{\rm disk} = \int_{\rm disk} \left(\vec{r}_{\rm P} \times \vec{F} \right) \Big|_z df$$

$$P_{\rm disk} = \int_{\rm disk} \dot{\vec{r}}_{\rm p} \cdot \vec{F} \, df$$

t2d-e10m : ρ (0.25, 5.2201E-01, 1.9388E+00) N= 3040; t= 10.00

Torque

Eccentricity

In 3D radiative disks

- *e*-damping for all planet masses. (\Rightarrow Poster Bertram Bitsch) Small *e*: exponential damping, large *e*: $\dot{e} \propto e^{-2}$
- Need e < 0.01 0.02 for outward migration to work (radiative disks)

 \implies Need multiple objects ! (and Scattering)

Resonances

Resonant capture

2 massive Planets in disk

Two planets: joint, large gap Outer planet : Pushed inward Inner planet : Pushed outward Seperation reduction:

Resonant capture

Pumping through Resonances

Here: System-parameter of GJ 876 (2 planets in 2:1 resonance, 60:30 days)

W. Kley

Resonances

Radial Velocity technique

HD 45364: system in 3:2 resonance

HD 60532: system in 3:1 resonance

GJ 876: additional outer planet, 4:2:1 Laplacian resonance ?

(System with clearest sign of 2:1 resonance)

• Transit timing

Kepler: 5 new multiple planet systems (tbc) (3 near resonance, 2×2 :1, 1×5 :2) WASP-3b: need outer perturber; near 2:1 or 5:2 <u>NN Ser</u>: eclipsing post-common-envelope binary, $P_{orb} = 3.12$ hrs WD & M4 dwarf, 2 planets in 2:1 resonance

Direct Imaging

HR 8799: 3 planet system at large distances)

(massive planets: 7, 10, 10 M_{Jup})

(at 24, 38, 68 AU; (stable only if in: 4:2:1 resonance)

About 30% of multi-planet system close to MMR (Wright ea. 2011)

Resonances The system HD 45364

Announced by: Correia ea. 2009

3:2 Resonance, $m_1 = 0.19, m_2 = 0.69 M_J$, at 0.68, 0.89 AU

System formation through full 2D hydrodyn. simulations!

Observed *e*: 0.17, 0.097, Simulation: 0.036, 0.017, same χ^2

(Rein, Papaloizou, Kley, 2010)

For clarification: More observations !

Resonances

(Slide from Eric Ford)

W. Kley

Tilted Orbits "Turning Planetary Theory Upside Down"

ESO press release 13. April, 2010 "Misalignment of planetary orbit and stellar rotation" (Triaud et al. 2010)

W. Kley

Tilted Orbits

Obliquity vs. stellar Mass

A

Sky projected angle

(Winn et al., 2010)

Tilted Orbits

Planets in 3D radiative disks

- *i*-damping for all planet masses. (\implies Poster Bertram Bitsch) Small *i*: exponential damping, large *i*: $\dot{i} \propto i^{-2}$
- Migration still outward upto $i \approx 4^o$
- ⇒ Need multiple objects ! (Scattering)

- Planet-disk interaction moves planets
 - Inward for isothermal disks
 - + possibly outward/slowed in radiative disks
 - for small planets, small eccentricities, opacities
 - + helps to avoid too rapid type I (see Pop.synthesis)
- Eccentricity & Inclination damped by disk
- Resonant migration
 - + explain resonant planets
 - + supplies initial conditions for scattering
- Eccentric & inclined planets through scattering
 - Obliquity vs. stellar mass

Ţ