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Protoplanetary disks: observations

HH-30; Burrows et al.;NASAProtoplanetary disks in the Orion Nebula; HST
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Protoplanetary disks: observations

HH-30; Burrows et al.;NASAProtoplanetary disks in the Orion Nebula; HST

disks lifetime gives maximum formation time ⇒
Giant planets must form in < 10 Myr 
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Giant planets form by accreting gas from protoplanetary disks

Protoplanetary disks: observations

HH-30; Burrows et al.;NASAProtoplanetary disks in the Orion Nebula; HST

disks lifetime gives maximum formation time ⇒
Giant planets must form in < 10 Myr 

disks mass and gas-to-solids ratio give available material⇒
Typical mass from 0.001 to 0.1 Msun
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Extrasolar planets: observations
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Extrasolar planets: observations

not considered as single objects, but as a population
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Extrasolar planets   

Huge diversity resulting from different ICs?

Protoplanetary disk
Metallicity
Environement

To explain the observations, need to take into account

1) the ICs, with the correct probability laws
2) the observational biases (RV - microlensing - transit) 

⇒ Population synthesis
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- distributions (probability of occurence) for 
    - disk mass 
    - disk lifetime
    - abundance

compute synthetic 
planet population

- distribution of semi-major axis
- distribution of masses
- fraction of hot/cold jupiters
- metallicity effect

model solution 
found!

match
no match

statistical tests:

from 
observations

initial conditions:

apply observational
detection bias (RV)

Extra-solar planet population synthesis    

formation model
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- distributions (probability of occurence) for 
    - disk mass 
    - disk lifetime
    - abundance

compute synthetic 
planet population

- distribution of semi-major axis
- distribution of masses
- fraction of hot/cold jupiters
- metallicity effect

model solution 
found!

match
no match

statistical tests:

from 
observations

initial conditions:

apply observational
detection bias (RV)

check against 
detections by other 

methods 

unique?

Extra-solar planet population synthesis    

formation model
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Population synthesis: initial conditions
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FIGURE 1. Age of stellar sample vs. fraction of stars with primordial disks (the “Haisch-Lada2” plot)

either through H! emission or infrared excess diagnostics. The best fit exponential decay curve is plotted
with timescale "disk = 2.5 Myr. Disk fraction data are plotted for (in age order) NGC 2024 [0.3 Myr; 29],
NGC 1333 [1 Myr; 30], Taurus [1.5 Myr; 31], Orion Nebula Cluster [1.5 Myr; 28], NGC 7129 [2 Myr;

32], NGC 2068/71 [2 Myr; 33], Cha I [2.6 Myr; 34, 27], IC 348 [2.5 Myr; 21], # Ori [3 Myr; 35], NGC
2264 [3.2 Myr; 28], Tr 37 [4.2 Myr; 36], Ori OB1b [4 Myr; 35], Upper Sco [5 Myr; 22], NGC 2362 [5

Myr; 37], $ Vel [5 Myr; 38], % Ori [5 Myr; 39], & Cha [6 Myr; 40], TW Hya [8 Myr; 31], 25 Ori [8 Myr;

35, 38], NGC 7160 [11.8 Myr; 36], ' Pic [12 Myr; 41], UCL/LCC [16 Myr; 42].

by the authors as being likely due to primordial disk due to the SED shape or strength

of the IR excess. The nature of some disks is unclear. Lada et al. [21] and others have

identified stars with weak IR excesses whose nature as stars with either accretion disks

of lower optical depth or simply warm dusty debris disks is at present ambiguous. Given
the rarity of “transition disks2” (disks with large inner holes), their inclusion or exclusion

is usually within the disk fraction uncertainties, and will have negligible impact on this

analysis. The fraction of stars in the transition phase has been noted to be very high

in a young sample [e.g. ∼1 Myr CrA; 46]. I have not yet attempted to disentangle the
effects of stellar mass in Fig. 1, so the reader should simply interpret the disk fractions as

being most representative of the low-mass population of stars (<2 M") as they dominate

the stellar samples. I have omitted results for more distant clusters whose disk fraction

2 A glossary for common terminology for young stellar objects with disks (the “diskionary”) was recently
compiled by Evans et al. [45].

M
am

aj
ek

 2
00

9

mardi, 7 juin 2011



- distributions (probability of occurence) for 
    - disk mass 
    - disk lifetime
    - abundance

from 
observations

initial conditions:

formation model

Extra-solar planet population synthesis    
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The disk instability model

Mayer et al. 2004
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The disk instability model

Mayer et al. 2004
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The disk instability model

Mayer et al. 2004

Origin of enrichment in heavy elements?

Clump formation depends critically on disk cooling
formation of massive planets
formation in outer parts of the disk

⇒
⇒
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The nucleated instability  model (2)

⇒
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The nucleated instability  model (2)

⇒

gas giant 
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The nucleated instability  model (2)

⇒

gas giant ice giant
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The nucleated instability  model (2)

⇒

gas giant ice giant

terrestrial
planet
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Planet formation model

⇒
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Planet formation model

1- Take an “observed” disk

⇒
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Planet formation model

1- Take an “observed” disk

2- Assume planet embryos exist somewhere

⇒
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Planet formation model

1- Take an “observed” disk

3- Calculate mass growth (solids and/or gas)

2- Assume planet embryos exist somewhere

⇒
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Planet’s internal structure
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Disk model

Gas surface density                                                             

Disk cut in half 
by planet

Y. Alibert et al.: Giant planet formation 345

The boundary conditions for this part of the calculation are
the same as in PT99, formally,

T (z = H) = T (τab, Tb, r, Ṁst,α), (4)

P(z = H) =
Ω2Hτab

κ(T (z = H), P(z = H))
, (5)

F(z = H) =
3

8π
ṀstΩ

2, (6)

and

F(z = 0) = 0. (7)

These conditions depend on three parameters: τab the optical
depth between the surface of the disc (z = H) and infinity,
Tb the background temperature, and Ṁst the equilibrium accre-
tion rate defined by Ṁst ≡ 3πν̃Σ where Σ ≡

∫ H

−H
ρdz is the usual

surface density, and ν̃ ≡
∫ H

−H νρdz/Σ. The values for τab and
Tb are the same as in PT99 (namely 10−2 and 10 K); the steady-
state accretion rate is a free parameter. As shown in PT99, the
structure obtained hardly varies with the first two parameters.

This system of 3 equations with 4 boundary conditions has
in general no solution, except for a certain value of H. This
value is found iteratively: Eqs. (1)–(3) are numerically inte-
grated from z = H to z = 0, using a fifth-order Runge-Kutta
method with adaptive step length (Press et al. 1992) until
F(z = 0) = 0 to a given accuracy.

Using this procedure, we calculate, for each distance to the
star r and each value of the equilibrium accretion rate Ṁst, the
distributions of pressure, temperature and density T (z; r, Ṁst),
P(z; r, Ṁst), ρ(z; r, Ṁst).

Using these distributions, we finally calculate the mid-
plane temperature (Tmid) and pressure (Pmid), as well as
the effective viscosity ν̃(r, Ṁst), the disc density scale height
H̃(r, Ṁst) defined by ρ(z = H̃) = e−1/2ρ(z = 0). The surface
density Σ(r, Ṁst) is also given as a function of Ṁst (for each
radius). By inverting this former relation, we finally obtain re-
lations Tmid(r,Σ), Pmid(r,Σ), ν̃(r,Σ) and H̃(r,Σ) for each value
of r (and each value of the other parameters α, τab and Tb).

2.1.2. Evolution of the surface density

The time evolution of the disc is governed by the well-known
diffusion equation (Lynden-Bell & Pringle 1974):

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(ν̃Σr1/2)

]
=

1
r
∂

∂r
(rJ(r)) , (8)

where J(r) ≡ 3
r1/2

∂
∂r (ν̃Σr1/2) is the mass flux (integrated over the

vertical axis z). This equation is modified to take into account
the momentum transfer between the planet and the disc, as well
as the effect of photo-evaporation and accretion onto the planet:

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
ν̃Σr1/2 + Λ(r)

]
+ Σ̇w(r) + Q̇planet(r). (9)

The rate of momentum transfer Λ between the planet and
the disc is calculated using the formula derived by Lin &
Papaloizou (1986):

Λ(r) =
fΛ
2r

√
GMstar

(
Mplanet

Mstar

)2 ( r

max(|r − a|, H̃)

)4
, (10)

where a is the sun-planet distance and fΛ is a numerical con-
stant1. The photo-evaporation term Σ̇w is given by (Veras &
Armitage 2004):
{
Σ̇w = 0 for R < Rg,
Σ̇w ∝ R−1 for R > Rg,

(11)

where Rg is usually taken to be 5 AU, and the total mass loss
due to photo-evaporation is a free parameter. Finally, a sink
term Q̇planet is included in Eq. (9), to take into account the
amount of gas accreted by the planet. This term is generally
negligible compared to the other ones, except during the run-
away phases.

To solve the diffusion Eq. (9) we need to specify two
boundary conditions. The first one is given at the outer radius
of the disc (in our simulations this radius is usually taken at
50 AU). At this radius, one can either give the surface density
Σ or its temporal derivative. Since the characteristic evolution
time of the disc is the diffusion timescale

Tν ∝
r2

ν̃
∝ 1
αΩ

( r
H

)2
, (12)

which2 is proportional to r3/2 for discs of approximately con-
stant aspect ratio (which is the case in these models, see PT99)
the outer boundary condition has little influence.

The second condition is specified at the inner radius where
we have used the following condition:

r
∂ν̃Σ

∂r

∣∣∣∣∣∣
inner radius

= 0. (13)

Since the total mass flux through a cylinder of radius r is given
by:

Φ(r) ≡ 2πrJ(r) = 3πν̃Σ + 6πr
∂ν̃Σ

∂r
, (14)

the boundary condition Eq. (13) can be expressed as:

Φ(r)
∣∣∣∣
inner radius

= 3πν̃Σ = Ṁst, (15)

i.e. the mass flux through the inner radius is equal to the equi-
librium flux. Therefore, this condition is equivalent to say that
the inner disc instantaneously adapt itself to the conditions
given by the outer disc. As discussed in PT99, this is consistent
with the expression of the characteristic timescale as a function
of the radius (Eq. (12)).

2.2. Migration rate

Dynamical tidal interactions of the growing protoplanet with
the disc lead to two phenomena: inward migration and gap
formation (Lin & Papaloizou 1979, Ward 1997, Tanaka et al.
2002). For low mass planets, the tidal interaction is linear, and

1 In this formula, the disc scale height H̃ is the scale height of the
unperturbed disc, and not the scale height in the middle of the gap.

2 The second part of Eq. (12) is obtained by expressing Eq. (1) as
1
ρ

P
H ∼ Ω2H and then replacing the sound velocity by ΩH in the defi-

nition of ν.
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The boundary conditions for this part of the calculation are
the same as in PT99, formally,

T (z = H) = T (τab, Tb, r, Ṁst,α), (4)

P(z = H) =
Ω2Hτab

κ(T (z = H), P(z = H))
, (5)

F(z = H) =
3

8π
ṀstΩ

2, (6)

and

F(z = 0) = 0. (7)

These conditions depend on three parameters: τab the optical
depth between the surface of the disc (z = H) and infinity,
Tb the background temperature, and Ṁst the equilibrium accre-
tion rate defined by Ṁst ≡ 3πν̃Σ where Σ ≡

∫ H

−H
ρdz is the usual

surface density, and ν̃ ≡
∫ H

−H νρdz/Σ. The values for τab and
Tb are the same as in PT99 (namely 10−2 and 10 K); the steady-
state accretion rate is a free parameter. As shown in PT99, the
structure obtained hardly varies with the first two parameters.

This system of 3 equations with 4 boundary conditions has
in general no solution, except for a certain value of H. This
value is found iteratively: Eqs. (1)–(3) are numerically inte-
grated from z = H to z = 0, using a fifth-order Runge-Kutta
method with adaptive step length (Press et al. 1992) until
F(z = 0) = 0 to a given accuracy.

Using this procedure, we calculate, for each distance to the
star r and each value of the equilibrium accretion rate Ṁst, the
distributions of pressure, temperature and density T (z; r, Ṁst),
P(z; r, Ṁst), ρ(z; r, Ṁst).

Using these distributions, we finally calculate the mid-
plane temperature (Tmid) and pressure (Pmid), as well as
the effective viscosity ν̃(r, Ṁst), the disc density scale height
H̃(r, Ṁst) defined by ρ(z = H̃) = e−1/2ρ(z = 0). The surface
density Σ(r, Ṁst) is also given as a function of Ṁst (for each
radius). By inverting this former relation, we finally obtain re-
lations Tmid(r,Σ), Pmid(r,Σ), ν̃(r,Σ) and H̃(r,Σ) for each value
of r (and each value of the other parameters α, τab and Tb).

2.1.2. Evolution of the surface density

The time evolution of the disc is governed by the well-known
diffusion equation (Lynden-Bell & Pringle 1974):

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(ν̃Σr1/2)

]
=

1
r
∂

∂r
(rJ(r)) , (8)

where J(r) ≡ 3
r1/2

∂
∂r (ν̃Σr1/2) is the mass flux (integrated over the

vertical axis z). This equation is modified to take into account
the momentum transfer between the planet and the disc, as well
as the effect of photo-evaporation and accretion onto the planet:

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
ν̃Σr1/2 + Λ(r)

]
+ Σ̇w(r) + Q̇planet(r). (9)

The rate of momentum transfer Λ between the planet and
the disc is calculated using the formula derived by Lin &
Papaloizou (1986):

Λ(r) =
fΛ
2r

√
GMstar

(
Mplanet

Mstar

)2 ( r

max(|r − a|, H̃)

)4
, (10)

where a is the sun-planet distance and fΛ is a numerical con-
stant1. The photo-evaporation term Σ̇w is given by (Veras &
Armitage 2004):
{
Σ̇w = 0 for R < Rg,
Σ̇w ∝ R−1 for R > Rg,

(11)

where Rg is usually taken to be 5 AU, and the total mass loss
due to photo-evaporation is a free parameter. Finally, a sink
term Q̇planet is included in Eq. (9), to take into account the
amount of gas accreted by the planet. This term is generally
negligible compared to the other ones, except during the run-
away phases.

To solve the diffusion Eq. (9) we need to specify two
boundary conditions. The first one is given at the outer radius
of the disc (in our simulations this radius is usually taken at
50 AU). At this radius, one can either give the surface density
Σ or its temporal derivative. Since the characteristic evolution
time of the disc is the diffusion timescale

Tν ∝
r2

ν̃
∝ 1
αΩ

( r
H

)2
, (12)

which2 is proportional to r3/2 for discs of approximately con-
stant aspect ratio (which is the case in these models, see PT99)
the outer boundary condition has little influence.

The second condition is specified at the inner radius where
we have used the following condition:

r
∂ν̃Σ

∂r

∣∣∣∣∣∣
inner radius

= 0. (13)

Since the total mass flux through a cylinder of radius r is given
by:

Φ(r) ≡ 2πrJ(r) = 3πν̃Σ + 6πr
∂ν̃Σ

∂r
, (14)

the boundary condition Eq. (13) can be expressed as:

Φ(r)
∣∣∣∣
inner radius

= 3πν̃Σ = Ṁst, (15)

i.e. the mass flux through the inner radius is equal to the equi-
librium flux. Therefore, this condition is equivalent to say that
the inner disc instantaneously adapt itself to the conditions
given by the outer disc. As discussed in PT99, this is consistent
with the expression of the characteristic timescale as a function
of the radius (Eq. (12)).

2.2. Migration rate

Dynamical tidal interactions of the growing protoplanet with
the disc lead to two phenomena: inward migration and gap
formation (Lin & Papaloizou 1979, Ward 1997, Tanaka et al.
2002). For low mass planets, the tidal interaction is linear, and

1 In this formula, the disc scale height H̃ is the scale height of the
unperturbed disc, and not the scale height in the middle of the gap.

2 The second part of Eq. (12) is obtained by expressing Eq. (1) as
1
ρ

P
H ∼ Ω2H and then replacing the sound velocity by ΩH in the defi-

nition of ν.

Viscosity, photoevaporation, planet accretion
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Gas surface density                                                             

Disk cut in half 
by planet
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The boundary conditions for this part of the calculation are
the same as in PT99, formally,

T (z = H) = T (τab, Tb, r, Ṁst,α), (4)

P(z = H) =
Ω2Hτab

κ(T (z = H), P(z = H))
, (5)

F(z = H) =
3

8π
ṀstΩ

2, (6)

and

F(z = 0) = 0. (7)

These conditions depend on three parameters: τab the optical
depth between the surface of the disc (z = H) and infinity,
Tb the background temperature, and Ṁst the equilibrium accre-
tion rate defined by Ṁst ≡ 3πν̃Σ where Σ ≡

∫ H

−H
ρdz is the usual

surface density, and ν̃ ≡
∫ H

−H νρdz/Σ. The values for τab and
Tb are the same as in PT99 (namely 10−2 and 10 K); the steady-
state accretion rate is a free parameter. As shown in PT99, the
structure obtained hardly varies with the first two parameters.

This system of 3 equations with 4 boundary conditions has
in general no solution, except for a certain value of H. This
value is found iteratively: Eqs. (1)–(3) are numerically inte-
grated from z = H to z = 0, using a fifth-order Runge-Kutta
method with adaptive step length (Press et al. 1992) until
F(z = 0) = 0 to a given accuracy.

Using this procedure, we calculate, for each distance to the
star r and each value of the equilibrium accretion rate Ṁst, the
distributions of pressure, temperature and density T (z; r, Ṁst),
P(z; r, Ṁst), ρ(z; r, Ṁst).

Using these distributions, we finally calculate the mid-
plane temperature (Tmid) and pressure (Pmid), as well as
the effective viscosity ν̃(r, Ṁst), the disc density scale height
H̃(r, Ṁst) defined by ρ(z = H̃) = e−1/2ρ(z = 0). The surface
density Σ(r, Ṁst) is also given as a function of Ṁst (for each
radius). By inverting this former relation, we finally obtain re-
lations Tmid(r,Σ), Pmid(r,Σ), ν̃(r,Σ) and H̃(r,Σ) for each value
of r (and each value of the other parameters α, τab and Tb).

2.1.2. Evolution of the surface density

The time evolution of the disc is governed by the well-known
diffusion equation (Lynden-Bell & Pringle 1974):

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(ν̃Σr1/2)

]
=

1
r
∂

∂r
(rJ(r)) , (8)

where J(r) ≡ 3
r1/2

∂
∂r (ν̃Σr1/2) is the mass flux (integrated over the

vertical axis z). This equation is modified to take into account
the momentum transfer between the planet and the disc, as well
as the effect of photo-evaporation and accretion onto the planet:

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
ν̃Σr1/2 + Λ(r)

]
+ Σ̇w(r) + Q̇planet(r). (9)

The rate of momentum transfer Λ between the planet and
the disc is calculated using the formula derived by Lin &
Papaloizou (1986):

Λ(r) =
fΛ
2r

√
GMstar

(
Mplanet

Mstar

)2 ( r

max(|r − a|, H̃)

)4
, (10)

where a is the sun-planet distance and fΛ is a numerical con-
stant1. The photo-evaporation term Σ̇w is given by (Veras &
Armitage 2004):
{
Σ̇w = 0 for R < Rg,
Σ̇w ∝ R−1 for R > Rg,

(11)

where Rg is usually taken to be 5 AU, and the total mass loss
due to photo-evaporation is a free parameter. Finally, a sink
term Q̇planet is included in Eq. (9), to take into account the
amount of gas accreted by the planet. This term is generally
negligible compared to the other ones, except during the run-
away phases.

To solve the diffusion Eq. (9) we need to specify two
boundary conditions. The first one is given at the outer radius
of the disc (in our simulations this radius is usually taken at
50 AU). At this radius, one can either give the surface density
Σ or its temporal derivative. Since the characteristic evolution
time of the disc is the diffusion timescale

Tν ∝
r2

ν̃
∝ 1
αΩ

( r
H

)2
, (12)

which2 is proportional to r3/2 for discs of approximately con-
stant aspect ratio (which is the case in these models, see PT99)
the outer boundary condition has little influence.

The second condition is specified at the inner radius where
we have used the following condition:

r
∂ν̃Σ

∂r

∣∣∣∣∣∣
inner radius

= 0. (13)

Since the total mass flux through a cylinder of radius r is given
by:

Φ(r) ≡ 2πrJ(r) = 3πν̃Σ + 6πr
∂ν̃Σ

∂r
, (14)

the boundary condition Eq. (13) can be expressed as:

Φ(r)
∣∣∣∣
inner radius

= 3πν̃Σ = Ṁst, (15)

i.e. the mass flux through the inner radius is equal to the equi-
librium flux. Therefore, this condition is equivalent to say that
the inner disc instantaneously adapt itself to the conditions
given by the outer disc. As discussed in PT99, this is consistent
with the expression of the characteristic timescale as a function
of the radius (Eq. (12)).

2.2. Migration rate

Dynamical tidal interactions of the growing protoplanet with
the disc lead to two phenomena: inward migration and gap
formation (Lin & Papaloizou 1979, Ward 1997, Tanaka et al.
2002). For low mass planets, the tidal interaction is linear, and

1 In this formula, the disc scale height H̃ is the scale height of the
unperturbed disc, and not the scale height in the middle of the gap.

2 The second part of Eq. (12) is obtained by expressing Eq. (1) as
1
ρ

P
H ∼ Ω2H and then replacing the sound velocity by ΩH in the defi-

nition of ν.
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The boundary conditions for this part of the calculation are
the same as in PT99, formally,

T (z = H) = T (τab, Tb, r, Ṁst,α), (4)

P(z = H) =
Ω2Hτab

κ(T (z = H), P(z = H))
, (5)

F(z = H) =
3

8π
ṀstΩ

2, (6)

and

F(z = 0) = 0. (7)

These conditions depend on three parameters: τab the optical
depth between the surface of the disc (z = H) and infinity,
Tb the background temperature, and Ṁst the equilibrium accre-
tion rate defined by Ṁst ≡ 3πν̃Σ where Σ ≡

∫ H

−H
ρdz is the usual

surface density, and ν̃ ≡
∫ H

−H νρdz/Σ. The values for τab and
Tb are the same as in PT99 (namely 10−2 and 10 K); the steady-
state accretion rate is a free parameter. As shown in PT99, the
structure obtained hardly varies with the first two parameters.

This system of 3 equations with 4 boundary conditions has
in general no solution, except for a certain value of H. This
value is found iteratively: Eqs. (1)–(3) are numerically inte-
grated from z = H to z = 0, using a fifth-order Runge-Kutta
method with adaptive step length (Press et al. 1992) until
F(z = 0) = 0 to a given accuracy.

Using this procedure, we calculate, for each distance to the
star r and each value of the equilibrium accretion rate Ṁst, the
distributions of pressure, temperature and density T (z; r, Ṁst),
P(z; r, Ṁst), ρ(z; r, Ṁst).

Using these distributions, we finally calculate the mid-
plane temperature (Tmid) and pressure (Pmid), as well as
the effective viscosity ν̃(r, Ṁst), the disc density scale height
H̃(r, Ṁst) defined by ρ(z = H̃) = e−1/2ρ(z = 0). The surface
density Σ(r, Ṁst) is also given as a function of Ṁst (for each
radius). By inverting this former relation, we finally obtain re-
lations Tmid(r,Σ), Pmid(r,Σ), ν̃(r,Σ) and H̃(r,Σ) for each value
of r (and each value of the other parameters α, τab and Tb).

2.1.2. Evolution of the surface density

The time evolution of the disc is governed by the well-known
diffusion equation (Lynden-Bell & Pringle 1974):

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(ν̃Σr1/2)

]
=

1
r
∂

∂r
(rJ(r)) , (8)

where J(r) ≡ 3
r1/2

∂
∂r (ν̃Σr1/2) is the mass flux (integrated over the

vertical axis z). This equation is modified to take into account
the momentum transfer between the planet and the disc, as well
as the effect of photo-evaporation and accretion onto the planet:

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
ν̃Σr1/2 + Λ(r)

]
+ Σ̇w(r) + Q̇planet(r). (9)

The rate of momentum transfer Λ between the planet and
the disc is calculated using the formula derived by Lin &
Papaloizou (1986):

Λ(r) =
fΛ
2r

√
GMstar

(
Mplanet

Mstar

)2 ( r

max(|r − a|, H̃)

)4
, (10)

where a is the sun-planet distance and fΛ is a numerical con-
stant1. The photo-evaporation term Σ̇w is given by (Veras &
Armitage 2004):
{
Σ̇w = 0 for R < Rg,
Σ̇w ∝ R−1 for R > Rg,

(11)

where Rg is usually taken to be 5 AU, and the total mass loss
due to photo-evaporation is a free parameter. Finally, a sink
term Q̇planet is included in Eq. (9), to take into account the
amount of gas accreted by the planet. This term is generally
negligible compared to the other ones, except during the run-
away phases.

To solve the diffusion Eq. (9) we need to specify two
boundary conditions. The first one is given at the outer radius
of the disc (in our simulations this radius is usually taken at
50 AU). At this radius, one can either give the surface density
Σ or its temporal derivative. Since the characteristic evolution
time of the disc is the diffusion timescale

Tν ∝
r2

ν̃
∝ 1
αΩ

( r
H

)2
, (12)

which2 is proportional to r3/2 for discs of approximately con-
stant aspect ratio (which is the case in these models, see PT99)
the outer boundary condition has little influence.

The second condition is specified at the inner radius where
we have used the following condition:

r
∂ν̃Σ

∂r

∣∣∣∣∣∣
inner radius

= 0. (13)

Since the total mass flux through a cylinder of radius r is given
by:

Φ(r) ≡ 2πrJ(r) = 3πν̃Σ + 6πr
∂ν̃Σ

∂r
, (14)

the boundary condition Eq. (13) can be expressed as:

Φ(r)
∣∣∣∣
inner radius

= 3πν̃Σ = Ṁst, (15)

i.e. the mass flux through the inner radius is equal to the equi-
librium flux. Therefore, this condition is equivalent to say that
the inner disc instantaneously adapt itself to the conditions
given by the outer disc. As discussed in PT99, this is consistent
with the expression of the characteristic timescale as a function
of the radius (Eq. (12)).

2.2. Migration rate

Dynamical tidal interactions of the growing protoplanet with
the disc lead to two phenomena: inward migration and gap
formation (Lin & Papaloizou 1979, Ward 1997, Tanaka et al.
2002). For low mass planets, the tidal interaction is linear, and

1 In this formula, the disc scale height H̃ is the scale height of the
unperturbed disc, and not the scale height in the middle of the gap.

2 The second part of Eq. (12) is obtained by expressing Eq. (1) as
1
ρ

P
H ∼ Ω2H and then replacing the sound velocity by ΩH in the defi-

nition of ν.
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defined as the semimajor axis where the inner boundary of the
planet’s feeding zone touches the inner boundary of our com-
putational disk at amin = 0.1 AU, (“the feeding limit”) i.e. at
atouch = amin/(1−4(Mplanet/(3 M∗))1/3). If a planet has migrated
to atouch, all we can state is that its final semimajor axis would
be ≤atouch (it is also possible that it eventually would have fallen
into the host star), and what its mass at atouch was.

3. Monte Carlo method

The basic idea of using a Monte Carlo method to synthesize
planetary populations is to sample all possible combinations
of initial conditions (protoplanetary disk mass, metallicity, etc.)
with a realistic probability of occurrence. This leads to all pos-
sible final outcomes of the formation process (i.e. planets) also
occurring with their relative probabilities. We first explain the
general six step procedure that we used.

In the first step, we identified four crucial initial condi-
tions, and studied the domain of possible values they can take
(Sect. 3.1). Some other initial conditions had to be kept constant
during the synthesis of one population, for simplicity or compu-
tational time restrictions (Sect. 3.2). In the second step, we de-
rived probability distributions for each of the four Monte Carlo
variables (Sect. 4). In the third step, we draw in a Monte Carlo
fashion large numbers of sets of initial conditions. The forth step
consists of using the formation model for each set of initial con-
ditions, giving the temporal evolution of the planet (formation
tracks, Sect. 5.1) as well as its final properties (mass, semimajor
axis, composition etc., Sect. 5.2).

Many of these synthetic planets would remain undetected by
current observational techniques. So, to be able to compare the
synthetic planet population with the observed one, we apply in
the fifth step a detailed synthetic detection bias (Paper II). In
this way, we obtain the sub-population of observable synthetic
planets. Ultimately, in the sixth step, we performed quantitative
statistical tests (Paper II) to compare the properties of this ob-
servable synthetic exoplanet sub-population with a comparison
sample of real extrasolar planets.

3.1. Monte Carlo variables

We use four Monte Carlo variables to describe the varying initial
conditions for the planetary formation process. Three describe
the protoplanetary disk and one the seed embryo.

1. The dust-to-gas ratio in the protoplanetary disk fD/G de-
termines (together with Σ0) the solid surface density.
Models with fD/G between 0.013 and 0.13 were computed.
Combined with the domain of Σ0, this corresponds to ini-
tial solid surface densities at a0 = 5.2 AU of between 0.65
and 130 g/cm2. For comparison, the MMSN has a value of
approximately 2.5 g/cm2 (Hayashi 1981).

2. The initial gas surface density Σ0 at 5.2 AU gives the amount
of gas available. Values between between 50 and 1000 g/cm2

were used. The MMSN is estimated to have had a value of
about 100−200 g/cm2 (Hayashi 1981).

3. The last variable that characterizes a disk is the rate at which
it loses mass due to photoevaporation Ṁw. For the popula-
tion presented below, it was allowed to vary between 5 ×
10−10 M%/yr and 3 × 10−8 M%/yr.

4. The initial semimajor axis of the seed embryo within the
disk, astart, is the fourth variable. It can take values of 0.1 ≤
astart ≤ 20 AU.

3.2. Parameters

Some other initial conditions of the model were kept constant
for all planets of a given population. We mention only the most
important parameters here. More details can be found in Alibert
et al. (2005a). For the nominal population discussed in Sect. 5,
we use a viscosity parameter α for the disk model of 0.007 and
an efficiency factor for type I migration fI of 0.001. The influ-
ence of these two important parameters is briefly discussed in
Sect. 5.3.3, and will be further considered in forthcoming publi-
cations. In this and the companion paper the mass of the central
star M∗ is kept constant at 1 M%.

4. Probability distributions

In the next step we determine the probability of occurrence of
a certain combination of initial conditions. In the ideal case, the
probability distributions for all our variables would be derived
directly from observations. Unfortunately, in reality, this is not
possible either because in some cases observations do not exist
or, even if they exist, a certain amount of modeling is necessary
to extract the distributions from the observations.

4.1. Dust to gas ratio fD/G – [Fe/H]

To establish a link between the dust-to-gas ratio fD/G, which is
the computational variable required by our model, and the corre-
sponding observable, the stellar metallicity [Fe/H], we assume:
(1) the stellar content in heavy elements is a good measure of the
overall abundance of heavy elements in the disk during forma-
tion time. Support for this assumption comes from the small dif-
ferences between solar photospheric and meteoritic abundances
(Asplund et al. 2005); (2) a scaled solar composition and (3) a
negligibly small influence of the change of the relative heavy
element content on the relative hydrogen content in the compar-
atively small [Fe/H] domain of interest for planet formation in
the solar neighborhood (−0.5 ≤ [Fe/H] ≤ 0.5). Then, similar to
Murray et al. (2001), we can write

fD/G
fD/G,%

= 10[Fe/H] (6)

where fD/G,% is the dust to gas ratio corresponding to [Fe/H] = 0.
This formula implies that we assume that iron is a good tracer
of the relevant overall amount of solids available for planet for-
mation. Robinson et al. (2006) have found that at a given iron
abundance, planet host stars are enriched in silicon and nickel
over stars without planets, indicating that the above relation is a
simplification.

Measurements of the heavy element abundance in the Sun
yield the amount (for complete condensation) of high Z material
that existed initially in the form of uniformly mixed fine dust
grains. However, what is relevant for our simulations is the con-
centration of solids in the innermost 20 AU of the disk at a later
stage, namely when the dust has evolved into the 100 km plan-
etesimals used in our model.

As has been shown by Kornet et al. (2001), the transition
from the very early dust phase to the later planetesimal phase in-
volves a number of coupled mechanisms of dust-dust and dust-
gas interactions like dust settling to the midplane, dust growth
by coagulation and radial drift. This leads to a redistribution of
the solids within the disk, which can in turn have important ef-
fects on planetary formation (Kornet et al. 2005). The key point
is that these processes lead to an increase of the solid to gas ra-
tio in the inner (<∼10−20 AU) planet forming regions of the disk

-Dust/gas ratio  Viscosity, photoevaporation, planet accretion
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migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of
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migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of
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migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of
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migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of
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Figure 1. Relative perturbation of the gas surface density obtained with a locally isothermal
equation of state (left panel), and with an adiabatic energy equation (right panel). The planet
is located at x = 1, y = 0.

density perturbations, located in the planet’s coorbital region. These perturbations can
have a dramatic impact on the corotation torque, as we shall see.

3. Additional density perturbations in the planet’s coorbital region
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Figure 2. Relative perturbations of the gas entropy, pressure and surface density obtained
with the adiabatic calculation of section 2. The planet is located at r = rp , ϕ = ϕp . In the
entropy panel, the vertical dashed line represents the planet’s corotation radius, and streamlines
are overplotted to show the extent of the planet’s coorbital region. In the pressure and surface
density panels, the nearly horizontal (saturated) structure at ϕ = ϕp is the planet’s wake. The
planet’s Hill sphere radius is RH ≈ 0.02 rp .

We display in figure 2 the relative perturbations of the gas entropy, pressure and
surface density obtained with the adiabatic calculation of section 2. While the azimuthal
range spans the whole [0, 2π] interval, the radial range depicted is restricted to a band
of width 2.5xs around the corotation radius, where xs denotes the half-width of the
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migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of
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migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of
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migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of

346 Y. Alibert et al.: Giant planet formation

migration is of type I (Ward 1997), whereas higher mass plan-
ets open a gap, leading to a reduction of the inward migration
(referred to type II migration).

Analytical models of type I migration have been com-
puted by Ward (1997). The resulting migration timescales are
much shorter than both the disc lifetime and the planet growth
timescale, making survival of forming planets unlikely: the
planet is accreted onto the central star. Migration could be
stopped if there is an inner cavity in the disc, but planets at
larger distances remain difficult to explain. Tanaka et al. (2002)
performed new analytical calculations of type I migration, in
two- or three-dimensional discs and found longer migration
timescales but still too short to ensure survival. Their migra-
tion rate is nevertheless confirmed by recent three-dimensional
numerical calculations of disc structure and planet migration
(Bate et al. 2003).

On the other hand, suggestions of increased type I migra-
tion timescales can be found in Nelson & Papaloizou (2004).
As shown by these authors, the torques exerted on at least low
mass planets (Mplanet < 30 M⊕) embedded in turbulent MHD
discs are strongly fluctuating, resulting in a slowing down of
the net inward motion. Contrary to laminar discs (as considered
by Tanaka et al. 2002; and Bate et al. 2003) the migration pro-
ceeds as a random walk, and the mean value of the migration
velocity seems to be highly reduced, compared to the laminar
case. Moreover, as shown by Menou & Goodman (2004), type I
migration of low-mass planets can be slowed down by nearly
one order of magnitude in regions of opacity transitions.

These considerations seem to indicate that the actual type I
migration timescale may in fact be considerably longer than
the one originally estimated by Ward (1997) or even by Tanaka
et al. (2002). For these reasons, and for lack of better knowl-
edge, we actually use for type I migration the formula derived
by Tanaka et al. (2002) reduced by an arbitrary numerical fac-
tor fI chosen between 1/10 and 1/100. Tests have shown that
provided this factor is small enough to allow planet survival,
its exact value does not change the formation timescale but just
the extent of the migration (see Sect. 3.1).

The migration velocity for low mass planets is taken to be:

daplanet

dt
= −2 fIaplanet

Γ

Lplanet
, (16)

where Lplanet ≡ Mplanet(GM∗aplanet)1/2 is the angular momentum
of the planet and the total torque Γ is given by:

Γ = (1.364+ 0.541αΣ,P)
(

Mplanet

M∗

rPΩp

Cs,P

)2
ΣPr4

PΩ
2
p, (17)

where Cs is the sound velocity and αΣ ≡ dlogΣ
dlog r . In this expres-

sion, the subscript P refers to quantities at the location of the
planet.

For type II migration, two cases have to be considered. For
low mass planets (when their mass is negligible compared that
of the disc) the inward velocity is given by the viscosity of the
disc. As the mass of the planet grows and becomes comparable
that of the disc, migration slows down and eventually stops.
In the latter case, the variation of the planet orbital angular

momentum is equal to the angular momentum transport rate
in the gaseous disc (Lin et al. 1996; Ida & Lin 2004):

d
dt

[
Mplaneta2

planetΩ
]
=

3
2
Σν̃Ωr2. (18)

In all cases of type II migration, the migration rate is limited by
the viscous transport in the disc:

daplanet

dt
= − 3ν

2aplanet
×Min(1, 2Σa2

planet/Mplanet). (19)

The migration type switches from type I to type II when the
planet becomes massive enough to open a gap in the disc. This
happens when the Hills radius of the planet becomes greater
than the density scale height H̃ of the disc.

2.3. The planetesimals

2.3.1. Surface density and physical properties

The initial amount of heavy elements in the disc is a poorly
constrained quantity. For this reason, the dust-to-gas ratio is
varied in our simulations, and takes two values depending on
the mid-plane temperature of the disc: fD/G for temperatures
below 150 K and 1/4 fD/G for higher temperatures. In principle,
the position of the iceline should evolve because of the viscous
evolution of the disc. However, since our treatment of the plan-
etesimals disc is very simple, we do not take into account this
evolution.

We assume that due to the scattering effect of the planet, the
surface density of planetesimals is constant within the current
feeding zone but decreases with time proportionally to the mass
accreted (and/or ejected from the disc) by the planet. The feed-
ing zone is assumed to extend to a distance of 4 RH on either

side of the planetary orbit, where RH ≡
(Mplanet

3M∗

)1/3
aplanet is the

Hills radius of the planet. For the inclinations and eccentricities
of the planetesimals, we use the following prescription (P96):

i =
1

aplanet

√
2GMplanetesimal

rplanetesimal

1√
3Ω
, (20)

where Mplanetesimal and rplanetesimal are the mass and radius of
planetesimals, at the location of the planet, and

e = max
(
2i, 2

RH

aplanet

)
· (21)

Finally, we also take into account the ejection of planetesimals
due to the planet, using the ejection rate given by Ida & Lin
(2004):

accretion rate
ejection rate

=

(
Vesc,disk

Vsurf,planet

)4
, (22)

where Vesc,disk =
√

2 G M'/aplanet is the escape velocity form
the central star, at the location of the planet, Vsurf,planet =√

GMplanet/Rc is the planet’s characteristic surface speed, and
Rc is the planet’s capture radius (see next section).

Note that our model for the evolution of the disc of plan-
etesimals remains a very simple one in which a number of
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Figure 1. Relative perturbation of the gas surface density obtained with a locally isothermal
equation of state (left panel), and with an adiabatic energy equation (right panel). The planet
is located at x = 1, y = 0.

density perturbations, located in the planet’s coorbital region. These perturbations can
have a dramatic impact on the corotation torque, as we shall see.

3. Additional density perturbations in the planet’s coorbital region
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Figure 2. Relative perturbations of the gas entropy, pressure and surface density obtained
with the adiabatic calculation of section 2. The planet is located at r = rp , ϕ = ϕp . In the
entropy panel, the vertical dashed line represents the planet’s corotation radius, and streamlines
are overplotted to show the extent of the planet’s coorbital region. In the pressure and surface
density panels, the nearly horizontal (saturated) structure at ϕ = ϕp is the planet’s wake. The
planet’s Hill sphere radius is RH ≈ 0.02 rp .

We display in figure 2 the relative perturbations of the gas entropy, pressure and
surface density obtained with the adiabatic calculation of section 2. While the azimuthal
range spans the whole [0, 2π] interval, the radial range depicted is restricted to a band
of width 2.5xs around the corotation radius, where xs denotes the half-width of the

•Planet dominated

Giant planets (with gap): Type II
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Slow-down

Tanaka et al. 2002
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Jupiter & Saturn formation

!! only competition for solid accretion - no dynamical interactions between planets !!
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Ida & Lin 2008

(From G. Marcy, IAU 276)

Prediction of planet 
formation models
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1- Modified migration
2- Planet-Planet interactions
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Modified migration1

•Locally isothermal (Paardekooper et al. 2010)
•Adiabatic, unsaturated (Paardekooper et al. 2010)
•Adiabatic, saturated (Linblad torques, residual horseshoe drag)
•Reduction of gas surface density (Crida & Morbidelli 07)
•Transition to type II (Crida et al. 2006)

Cooling?

Saturation?
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Low mass 
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(III) Multi-planetary systems
• Present statistics
 RV: 108 planets in 41 systems: 
        ~ 25 % of known exoplanets
  + transit candidates

  

• longest-running programmes 
           --> largest fraction of multi-planet systems  
                 Planets mainly form in multi-planet systems

• Most of them with 2 planets
• HD10180: 7 planets
• 55 Cnc   : 5 planets 
• Mu Ara, Gl876  : 4 planets
• Ups And, HD69830, HD40307: 3 planets

Need for multi-planet
formation models!
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Planet-planet interactions2
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Planet-planet interactions2

-Explicit N-body between planets with disk-planet interaction and collisions of planets.
-Eccentricity damping of planets (Nelson& Fogg 07), planetesimal ecc. as in Pollack et al. (96).
-Uniform planetesimal density in overlapping feeding zones.
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-Explicit N-body between planets with disk-planet interaction and collisions of planets.
-Eccentricity damping of planets (Nelson& Fogg 07), planetesimal ecc. as in Pollack et al. (96).
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Planetesimal transport
to the outermost planet

Uniform surface density
and excitation in the

common FZ

First planet FZ Second planet FZ

Overlap

The internal structures of the two planets are no more independant

N-body simulations by S. Pfyffer
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Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

mardi, 7 juin 2011



Isothermal type I migration / thermal criterion for gap opening

Planet-planet interactions2

6 times 1 planet 6 planets6 planets - no gravity

Kepler candidates
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Planet-planet interactions2

Isothermal type I migration / thermal criterion for gap opening
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Planet-planet interactions2

Kepler 11

Kepler 11

HD 10180

Isothermal type I migration / thermal criterion for gap opening
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Conclusions
Models reproduce:

Jupiter & Saturn (bulk composition - atm. composition)

Recent developments:

Planet-planet interactions

Type I migration rate

aM for sub-sample of planets (10 m/s, no system, ...)

Disk models including irradiation and B effect

may explain the planet oasis}

produce planet desert

and...
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Planetary population synthesis considering different 
solids accretion rates 

A. Fortier, Y. Alibert and F. Carron
Physikalisches Institut, Universität Bern, Switzerland

The pink poster!
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Runaway vs. Oligarchic growth for the core
• Initial mass: Moon mass
• Planetesimals radii: 100 km
• Runaway: giant planets are all over the disk
• Oligarchic: almost NO giant planets can  form 
before the disk dissipates

Oligarchic growth: one planet per disk
• Initial mass: Moon mass
• Planetesimals radii: 100 m
• Giant planets can form everywhere in the 
disk

N-body planet population synthesis
• Initially: 6 seeds of the Moon mass
• Oligarchic growth
• Planetesimals radii: 100 m
• Giant planets can form everywhere in the 
disk but the mean mass is lower than when 
one planet per disk is considered
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Conclusions
Models reproduce:

Jupiter & Saturn (bulk composition - atm. composition)

Recent developments:

Planet-planet interactions

Type I migration rate

aM for sub-sample of planets (10 m/s, no system, ...)

Disk models including irradiation and B effect

may explain the planet oasis}

produce planet desert

Can we form the Solar System using same models?

we don’t know... yet!
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