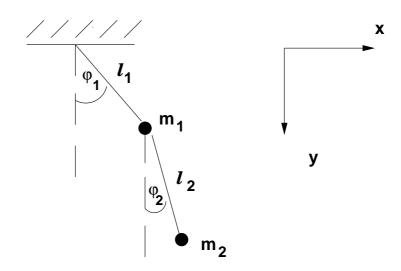
Übungsblatt No.3: Astrophysik II

Bis 18.4.07 Dozent: Dieter Breitschwerdt

8. Zeigen Sie für das Zentralkraftproblem (im Rahmen des Zweikörper-Problems), dass der Term $\frac{l^2}{\mu \cdot r^3}$ der Zentrifugalkraft entspricht (wobei μ die reduzierte Masse ist). Geben Sie das zugehörige Potential an und interpretieren Sie das Ergebnis. Was lässt sich für ein $V(r) = -\frac{k}{r}$ Kraft-Potential und $l \neq 0$ aussagen?

9. Beispiel für Lagrange-Formalismus: ebenes Doppelpendel


Die Massen m_1 und m_2 können sich nur in der Zeichenebene bewegen (siehe Skizze). Die Fäden seien masselos und Reibung sei vernachlässigbar, es wirke die Schwerkraft.

- a) Stellen Sie die Lagrange-Fkt. auf
- b) Stellen Sie die Bewegungsglg. auf (Euler-Lagrange-Gln.)
- c) Integrieren Sie, d.h. lösen Sie die DGL für kleine Amplituden und den Spezialfall $m_1=m_2\equiv m$ und $l_1=l_2\equiv l$
- d) Geben Sie die Lösung für folgende Anfangsbedingungen an:

$$\varphi_1(0) = \varphi_2(0) = \dot{\varphi}_2(0) = 0$$

$$\dot{\varphi}_1(0) = \dot{\varphi}_0$$

e) Plotten/zeichnen Sie die Lösungen $\varphi_1(t)$ und $\varphi_2(t)$ für $L=3m,~g=9.81m~s^{-2},~\dot{\varphi}_0=0.5 {\rm rad/s}$

